Skip to main content

From Hype to Hope: Genome-Wide Association Studies in Soybean

  • Chapter
  • First Online:
The Soybean Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 1213 Accesses

Abstract

Association mapping studies in plants including soybean contribute to not only detecting the genetic basis of variation in yield, physiological, developmental, and morphological traits but also bringing together researchers to assemble core collections and develop genetic platforms for genotyping, phenotyping, analysis, and interpretation. The establishment of the unified mixed model greatly facilitated association mapping studies in plants and further methodology work in general. Association mapping is well positioned to exploit the advances in next-generation genomic technologies and high-through-put phenotyping. Genome-wide association studies are expected to increase dramatically once genome sequences are obtained. Moving forward, researchers in soybean and all other major plant genetics need to develop improved genetic designs and computational tools to address several challenges such as missing heritability, new gene identification, genotyping-by-sequencing, rare variants, imputation, high-throughput phenotyping, and integration of collective biological information and analytical tools into GWAS. In this chapter, we describe major progress in understanding population structure, advancements in design, and implementation of association mapping and summarize examples of association mapping in soybean. Finally, major opportunities with potential implications in soybean genetics are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It seems that a list of abbreviations (or adding the complete terms in parentheses after some of the abbreviations) is needed.

References

  • Aulchenko YS et al (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23(10):1294–1296

    Article  CAS  PubMed  Google Scholar 

  • Bandillo N et al (2015) A population structure and genome-wide association analysis on the USDA soybean germplasm collection. Plant Genome 8(3):1–13

    Article  Google Scholar 

  • Bansal V et al (2010) Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 11(11):773–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barsh GS et al (2012) Guidelines for genome-wide association studies. PLoS Genet 8(7):e1002812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardo R, Yu JM (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47(3):1082–1090

    Article  Google Scholar 

  • Bolon YT et al (2014) eQTL networks reveal complex genetic architecture in the immature soybean seed. Plant Genome 7(1):1–14

    Article  Google Scholar 

  • Bradbury PJ et al (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Buckler ES et al (2009) The genetic architecture of maize flowering time. Science 325(5941):714–718

    Article  CAS  PubMed  Google Scholar 

  • Chutimanitsakun Y et al (2011) Construction and application for QTL analysis of a restriction site associated DNA (RAD) linkage map in barley. BMC Genomics 12:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11(6):415–425

    Article  CAS  PubMed  Google Scholar 

  • Crainiceanu CM, Ruppert D (2004) Likelihood ratio tests for goodness-of-fit of a nonlinear regression model. J Multivariate Anal 91(1):35–52

    Article  Google Scholar 

  • Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55(4):997–1004

    Article  CAS  PubMed  Google Scholar 

  • Devlin B, Bacanu SA, Roeder K (2004) Genomic control to the extreme. Nat Genet 36(11):1129–1130

    Article  CAS  PubMed  Google Scholar 

  • Dhanapal AP et al (2015a) Genome-wide association study (GWAS) of carbon isotope ratio (delta C-13) in diverse soybean [Glycine max (L.) Merr.] genotypes. Theor Appl Genet 128(1):73–91

    Article  CAS  PubMed  Google Scholar 

  • Dhanapal AP et al (2015b) Genome-wide association analysis of diverse soybean genotypes reveals novel markers for nitrogen traits. Plant Genome 8(3):1–15

    Google Scholar 

  • Diers BW et al (2015) Nested association mapping of agronomic traits in soybeans. In: Soybean Breeders Workshop, St. Louis

    Google Scholar 

  • Elshire RJ et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmour AR (2007) Mixed model regression mapping for QTL detection in experimental crosses. Comput Stat Data Anal 51(8):3749–3764

    Article  Google Scholar 

  • Guan RX et al (2014) Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J 80(6):937–950

    Article  CAS  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2(4):618–620

    Article  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49(1):1–12

    Article  CAS  Google Scholar 

  • Henderson CR (1984) Applications of linear models in animal breeding. University of Guelph, Guelph

    Google Scholar 

  • Herritt M et al (2016) Identification of genomic loci associated with the photochemical reflectance index by genome-wide association study in soybean. Plant Genome 9(2):93–104

    Google Scholar 

  • Huang XH et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19(6):1068–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang EY et al (2014) A genome-wide association study of seed protein and oil content in soybean. BMC Genomics 15:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyten DL et al (2007) Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics 175(4):1937–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang HM et al (2008) Efficient control of population structure in model organism association mapping. Genetics 178(3):1709–1723

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang HM et al (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42(4):348–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kariya T, Kurata H (2004) Generalized least squares. Wiley, London

    Book  Google Scholar 

  • Kumar B et al (2014) Population structure and association mapping studies for important agronomic traits in soybean. J Genet 93(3):775–784

    Article  PubMed  Google Scholar 

  • Li B, Leal SM (2008) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83(3):311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y-H et al (2016) Dissecting the genetic basis of resistance to soybean cyst nematode combining linkage and association mapping. Plant Genome 9(2):16–26

    Google Scholar 

  • Lipka AE et al (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28(18):2397–2399

    Article  CAS  PubMed  Google Scholar 

  • Lippert C et al (2011) FaST linear mixed models for genome-wide association studies. Nat Methods 8(10):833–835

    Article  CAS  PubMed  Google Scholar 

  • Loh PR et al (2015) Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet 47(3):284–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lü H-Y et al (2011) Epistatic association mapping in homozygous crop cultivars. PLoS ONE 6(3):e17773

    Article  PubMed  PubMed Central  Google Scholar 

  • Madsen BE, Browning SR (2009) A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5(2):e1000384

    Article  PubMed  PubMed Central  Google Scholar 

  • Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456(7218):18–21

    Article  CAS  PubMed  Google Scholar 

  • Manolio TA et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11(7):499–511

    Article  CAS  PubMed  Google Scholar 

  • Metzker ML (2010) Applications of next-generation sequencing sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46

    Article  CAS  PubMed  Google Scholar 

  • Mian MAR et al (1996) Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet 93(7):1011–1016

    Article  CAS  PubMed  Google Scholar 

  • Morgenthaler S, Thilly WG (2007) A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res Fundam Mol Mech Mutagen 615(1–2):28–56

    Article  CAS  Google Scholar 

  • Morris GP et al (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110(2):453–458

    Article  CAS  PubMed  Google Scholar 

  • Myles S et al (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21(8):2194–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ott J, Kamatani Y, Lathrop M (2011) Family-based designs for genome-wide association studies. Nat Rev Genet 12(7):465–474

    Article  CAS  PubMed  Google Scholar 

  • Patil G et al (2016) Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci Rep 6:19199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2(12):2074–2093

    Article  CAS  Google Scholar 

  • Price AL et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38(8):904–909

    Article  CAS  PubMed  Google Scholar 

  • Price AL et al (2010a) Pooled association tests for rare variants in exon-resequencing studies. Am J Hum Genet 86(6):832–838

    Article  PubMed  PubMed Central  Google Scholar 

  • Price AL et al (2010b) New approaches to population stratification in genome-wide association studies. Nat Rev Genet 11(7):459–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price AL et al (2013) Mixed models can correct for population structure for genomic regions under selection response. Nat Rev Genet 14(4):300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quaas RL, Pollak EJ (1981) Modified equations for sire models with groups. J Dairy Sci 64(9):1868–1872

    Google Scholar 

  • Ray JD et al (2015) Genome-wide association study of ureide concentration in diverse maturity group IV soybean [Glycine max (L.) Merr.] accessions. G3 5(11):2391–2403

    Article  PubMed  PubMed Central  Google Scholar 

  • Rincker K et al (2016) Genome-wide association study of brown stem rot resistance in soybean across multiple populations. Plant Genome 9(2):68–78

    Google Scholar 

  • Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273(5281):1516–1517

    Article  CAS  PubMed  Google Scholar 

  • Segura V et al (2012) An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet 44(7):825–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sham PC, Purcell SM (2014) Statistical power and significance testing in large-scale genetic studies. Nat Rev Genet 15(5):335–346

    Article  CAS  PubMed  Google Scholar 

  • Song QJ et al (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS ONE 8(1):e54985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song QJ et al (2015) Fingerprinting soybean germplasm and its utility in genomic research. G3 5(10):1999–2006

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang Y et al (2016) GAPIT version 2: an enhanced integrated tool for genomic association and prediction. Plant Genome 9(2):1–9

    Article  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327(5967):818–822

    Article  CAS  PubMed  Google Scholar 

  • Thornsberry JM et al (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28(3):286–289

    Article  CAS  PubMed  Google Scholar 

  • Valliyodan B et al (2016) Landscape of genomic diversity and trait discovery in soybean. Sci Rep 6:23598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12(6):e1001883

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaughn JN et al (2014) The genetic architecture of seed composition in soybean is refined by genome-wide association scans across multiple populations. G3 4(11):2283–2294

    Article  PubMed  PubMed Central  Google Scholar 

  • Vineis P, Pearce N (2010) Missing heritability in genome-wide association study research. Nat Rev Genet 11(8):589

    Article  CAS  PubMed  Google Scholar 

  • Vuong TD et al (2015) Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC Genomics 16:593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J et al (2008) Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theor Appl Genet 116(6):777–787

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) Analysing biological pathways in genome-wide association studies. Nat Rev Genet 11(12):843–854

    Article  CAS  PubMed  Google Scholar 

  • Wang J et al (2016) Development and application of a novel genome-wide SNP array reveals domestication history in soybean. Sci Rep 6:20728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu MC et al (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89(1):82–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X et al (2013) Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci 110(33):13469–13474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W et al (2014) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun 5:5087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu JM, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17(2):155–160

    Article  CAS  PubMed  Google Scholar 

  • Yu JM et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38(2):203–208

    Article  CAS  PubMed  Google Scholar 

  • Yu JM et al (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178(1):539–551

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang ZW et al (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42(4):355–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YH et al (2015) Establishment of a 100-seed weight quantitative trait locus-allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes. J Exp Bot 66(20):6311–6325

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44(7):821–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZK et al (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33(4):408–414

    Article  CAS  PubMed  Google Scholar 

  • Zhou L et al (2016) Identification and validation of candidate genes associated with domesticated and improved traits in soybean. Plant Genome 9(2):232–248

    Google Scholar 

  • Zhu CS, Yu JM (2009) Nonmetric multidimensional scaling corrects for population structure in association mapping with different sample types. Genetics 182(3):875–888

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu CS et al (2008) Status and prospects of association mapping in plants. Plant Genome 1(1):5–20

    Article  CAS  Google Scholar 

  • Zhu CS et al (2011) Integrating rare-variant testing, function prediction, and gene network in composite resequencing-based genome-wide association studies (CR-GWAS). G3 1(3):233–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry T. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhu, C., Valliyodan, B., Li, Y., Gai, J., Nguyen, H.T. (2017). From Hype to Hope: Genome-Wide Association Studies in Soybean. In: Nguyen, H., Bhattacharyya, M. (eds) The Soybean Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-64198-0_7

Download citation

Publish with us

Policies and ethics