Skip to main content

Transposable Elements

  • Chapter
  • First Online:
The Soybean Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 1158 Accesses

Abstract

Transposable elements (TEs) including retrotransposons and DNA transposons are the major DNA components in soybean (Glycine max L. Merr.), accounting for approximately 60% of the soybean reference genome. The majority of soybean TEs are long terminal repeat retrotransposons that were amplified in the past a few million years (myr). Overall, the TEs were preferentially accumulated in the pericentromeric regions of all chromosomes, but different classes/superfamilies/families of TEs generally exhibited different patterns of distribution along chromosomes. Such a distribution pattern appears to be the outcome of TE insertion bias as well as natural selection purging deleterious genic TE insertions. Despite their periodic proliferation, many TEs have accumulated various deletions through unequal homologous recombination and illegitimate recombination to become “dead” copies and to counteract genome expansion caused by periodic TE amplification. The majority of intact TEs appear to be inactivated, either transcriptionally or transpositionally, by epigenetic mechanisms such as DNA methylation, histone modification, and small RNA-mediated silencing. Nevertheless, active endogenous TEs have been found and are being used to develop TE-based soybean mutants for discovery of genes underlying traits of agronomic importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aufsatz W, Mette MF, van der Winden J, Matzke AJM, Matzke M (2002) RNA-directed DNA methylation in Arabidopsis. Proc Natl Acad Sci USA 99:16499–16506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, Deragon JM, Westerman RP, Sanmiguel PJ, Bennetzen JL (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet 5:e1000732

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennetzen J (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet 15:621–627

    Article  CAS  Google Scholar 

  • Bennetzen JL, Ma J, Devos K (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao X, Jacobsen SE (2002) Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietrich CR, Cui F, Packila ML, Li J, Ashlock DA, Nikolau BJ, Schnable PS (2002) Maize Mu transposons are targeted to the 59 untranslated region of the gl8 gene and sequences flanking Mu target-site duplications exhibit nonrandom nucleotide composition throughout the genome. Genetics 160:697–716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dooner HK, He L (2008) Maize genome structure variation: interplay between retrotransposon polymorphisms and genic recombination. Plant Cell 20:249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci USA 109:E2183–E2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du C, Fefelova N, Caronna J, He L, Dooner HK (2009) The polychromatic Helitron landscape of the maize genome. Proc Natl Acad Sci USA 106:19916–19921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Grant D, Tian Z, Nelson RT, Zhu L, Shoemaker RC, Ma J (2010a) SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genom 11:113

    Article  Google Scholar 

  • Du J, Tian Z, Hans CS, Laten HM, Cannon SB, Jackson SA, Shoemaker RC, Ma J (2010b) Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J 63:584–598

    Article  CAS  PubMed  Google Scholar 

  • Du J, Tian Z, Bowen NJ, Schmutz J, Shoemaker RC, Ma J (2010c) Bifurcation and enhancement of autonomous-nonautonomous retrotransposon partnership through LTR swapping in soybean. Plant Cell 22:48–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Tian Z, Sui Y, Zhao M, Song Q, Cannon SB, Cregan P, Ma J (2012) Pericentromeric effects shape the patterns of divergence, retention, and expression of duplicated genes in the paleopolyploid soybean. Plant Cell 24:21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Baidouri M, Kim KD, Abernathy B, Arikit S, Maumus F, Panaud O, Meyers BC, Jackson SA (2015) A new approach for annotation of transposable elements using small RNA mapping. Nucleic Acids Res 43:e84

    Article  PubMed  PubMed Central  Google Scholar 

  • Fedoroff NV (2012) Transposable elements, epigenetics, and genome evolution. Science 338:758–767

    Article  CAS  PubMed  Google Scholar 

  • Feng YX, Moore SP, Garfinkel DJ, Rein A (2000) The genomic RNA in Ty1 virus-like particles is dimeric. J Virol 74:10819–10821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feschotte C, Jiang N, Wessler S (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  CAS  PubMed  Google Scholar 

  • Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107

    Article  CAS  PubMed  Google Scholar 

  • Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK (2007) Recombination: an underappreciated factor in the evolution of plant genomes. Nat Rev Genet 8:77–84

    Article  CAS  PubMed  Google Scholar 

  • Grandbastien MA (1992) Retroelements in higher-plants. Trends Gene 8:103–108

    Article  CAS  Google Scholar 

  • Grandbastien MA (2015) LTR retrotransposons, handy hitchhikers of plant regulation and stress response. Biochim Biophys Acta 1849:403–416

    Article  CAS  PubMed  Google Scholar 

  • Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanada K, Vallejo V, Nobuta K, Slotkin RK, Lisch D, Meyers BC, Shiu SH, Jiang N (2009) The functional role of pack-MULEs in rice inferred from purifying selection and expression profile. Plant Cell 21:25–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock CN, Zhang F, Floyd K, Richardson AO, Lafayette P, Tucker D, Wessler SR, Parrott WA (2011) The rice miniature inverted repeat transposable element mPing is an effective insertional mutagen in soybean. Plant Physiol 157:552–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashida S, Kitamura K, Mikami T, Kishima Y (2003) Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus. Plant Physiol 132:1207–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirochika H (1993) Activation of tobacco retrotransposons during tissue-culture. EMBO J 12:2521–2528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirochika H, Okamoto H, Kakutani T (2000) Silencing of retrotransposons in Arabidopsis and reactivation by the ddm1 mutation. Plant Cell 12:357–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollister JD, Gaut BS (2007) Population and evolutionary dynamics of Helitron transposable elements in Arabidopsis thaliana. Mol Biol Evol 11:2515–2524

    Article  Google Scholar 

  • Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19:1419–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu WS, Temin HM (1990) Retroviral recombination and reverse transcription. Science 250:1227–1233

    Article  CAS  PubMed  Google Scholar 

  • Huettel B, Kanno T, Daxinger L, Bucher E, van der Winden J, Matzke AJ, Matzke M (2007) RNA-directed DNA methylation mediated by DRD1 and Pol IVb: a versatile pathway for transcriptional gene silencing in plants. Biochim Biophys Acta 1769:358–374

    Article  CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jiang N, Wessler SR (2001) Insertion preference of maize and rice miniature inverted repeat transposable elements as revealed by the analysis of nested elements. Plant Cell 13:2553–2564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573

    Article  CAS  PubMed  Google Scholar 

  • Kashkush K, Khasdan V (2007) Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes. Genetics 177:1975–1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  CAS  PubMed  Google Scholar 

  • Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Carrington JC (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5:479–493

    Article  CAS  Google Scholar 

  • Kim KD, El Baidouri M, Abernathy B, Iwata-Otsubo A, Chavarro C, Gonzales M, Libault M, Grimwood J, Jackson SA (2015) A comparative epigenomic analysis of polyploidy-derived genes in soybean and commonbean. Plant Physiol 168:1433–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita T, Miura A, Choi YH, Kinoshita Y, Cao X, Jacobsen SE, Fischer RL, Kakutani T (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303:521–523

    Article  CAS  PubMed  Google Scholar 

  • Kirchner J, Connolly CM, Sandmeyer SB (1995) Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element. Science 267:1488–1491

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  CAS  PubMed  Google Scholar 

  • Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 102:9068–9073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Lippman Z, Martienssen R (2004) The role of RNA interference in heterochromatic silencing. Nature 431:364–370

    Article  CAS  PubMed  Google Scholar 

  • Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66

    Article  CAS  PubMed  Google Scholar 

  • Lisch D (2013) How important are transposons for plant evolution? Nat Rev Genet 14:49–61

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Yeh CT, Ji T, Ying K, Wu H, Tang HM, Fu Y, Nettleton D, Schnable PS (2009) Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet 5:e1000733

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo GX, Taylor J (1990) Template switching by reverse transcriptase during DNA synthesis. J Virol 64:4321–4328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Bennetzen JL (2006) Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice. Proc Natl Acad Sci 103:383–388

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matzke MA, Kanno T, Huettel B, Daxinger L, Matzke AJM (2007) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10:512–519

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1956a) Intranuclear systems controlling gene action and mutation. Brookhaven Symp Biol 8:58–74

    Google Scholar 

  • McClintock B (1956b) Controlling elements and the gene. Brookhaven Symp Biol 21:197–216

    Article  CAS  Google Scholar 

  • McNairn AJ, Gilbert DM (2003) Epigenomic replication: linking epigenetics to DNA replication. BioEssays 25:647–656

    Article  CAS  PubMed  Google Scholar 

  • Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15:1771–1780

    Article  PubMed  PubMed Central  Google Scholar 

  • Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, Okumoto Y, Tanisaka T, Wessler SR (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461:1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Nobuta K, Venu RC, Lu C, Beló A, Vemaraju K, Kulkarni K, Wang W, Pillay M, Green PJ, Wang GL, Meyers BC (2007) An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol 25:473–477

    Article  CAS  PubMed  Google Scholar 

  • Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritham EJ, Feschotte C (2007) Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. Proc Natl Acad Sci USA 6:895–1900

    Google Scholar 

  • Rhodes PR, Vodkin LO (1985) Highly structured sequence homology between an insertion element and the gene in which it resides. Proc Natl Acad Sci USA 82:493–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes PR, Vodkin LO (1988) Organization of the Tgm family of transposable elements in soybean. Genetics 120:597–604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA 104:11376–11381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Schneider KL, Presting GG (2008) Sustained retrotransposition is mediated by nucleotide deletions and interelement recombinations. Proc Natl Acad Sci USA 105:15470–15474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  CAS  PubMed  Google Scholar 

  • Slotkin RK, Freeling M, Lisch D (2005) Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nat Genet 37:641–644

    Article  CAS  PubMed  Google Scholar 

  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi R, Morita Y, Nakayama M, Kanazawac A, Abe J (2011) An active CACTA-family transposable element is responsible for flower variegation in wild soybean Glycine soja. Plant Genome 11:0028

    Google Scholar 

  • Takeda S, Sugimoto K, Otsuki H, Hirochika H (1999) A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J 18:383–393

    Article  CAS  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • The International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

    Article  Google Scholar 

  • Tian Z, Rizzon C, Du J, Zhu L, Bennetze JL, Jackson SA, Gaut BS, Ma J (2009) Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons? Genome Res 19:2221–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Z, Zhao M, She M, Du J, Cannon SB, Liu X, Xu X, Qi X, Li MW, Lam HM, Ma J et al (2012) Genome-wide characterization of nonreference transposons reveals evolutionary propensities of transposons in soybean. Plant Cell 24:4422–4436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukahara S, Kawabe A, Kobayashi A, Ito T, Aizu T, Shin-I T, Toyoda A, Fujiyama A, Tarutani Y, Kakutani T (2012) Centromere-targeted de novo integrations of an LTR retrotransposon of Arabidopsis lyrata. Genes Dev 26:705–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitte C, Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci USA 103:17638–17643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitte C, Panaud O (2003) Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR-retrotransposons in rice Oryza sativa L. Mol Biol Evol 20:528–540

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Dooner HK (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci USA 103:17644–17649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Brar HK, Grosic S, Palmer RG, Bhattacharyya MK (2010) Excision of an active CACTA-like transposable element from DFR2 causes variegated flowers in soybean [Glycine max (L.) Merr.]. Genetics 184:53–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan F, Di S, Takahashi R (2015) CACTA-superfamily transposable element is inserted in MYB transcription factor gene of soybean line producing variegated seeds. Genome 58:365–374

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Bennetzen JL (2009) Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proc Natl Acad Sci USA 106:19922–19927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabala G, Vodkin LO (2005) The wp mutation of Glycine max carries a gene-fragment-rich transposon of the CACTA superfamily. Plant Cell 17:2619–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabala G, Vodkin L (2008) A putative autonomous 20.5 kb-CACTA transposon insertion in an F3’H allele identifies a new CACTA transposon subfamily in Glycine max. BMC Plant Biol 8:124

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Ma J (2013) Co-evolution of plant LTR-retrotransposons and their host genomes. Protein Cell 4:493–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Du J, Lin F, Tong C, Yu J, Huang S, Wang X, Liu S, Ma J (2013) Shifts in evolutionary rate and intensity of purifying selection between two Brassica genomes revealed by analyses of orthologous transposons and relics of a whole genome triplication. Plant J 76:211–220

    CAS  PubMed  Google Scholar 

  • Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69

    Article  CAS  PubMed  Google Scholar 

  • Zou S, Voytas DF (1997) Silent chromatin determines target preference of the Saccharomyces retrotransposon Ty5. Proc Natl Acad Sci USA 94:7412–7416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhao, M., Ma, J. (2017). Transposable Elements. In: Nguyen, H., Bhattacharyya, M. (eds) The Soybean Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-64198-0_11

Download citation

Publish with us

Policies and ethics