Skip to main content

Soybean Functional Genomics: Bridging the Genotype-to-Phenotype Gap

  • Chapter
  • First Online:
The Soybean Genome

Abstract

Technological advances coupled with the economic importance of soybean have led to increased efforts to understand gene function and associate genes with phenotypes of agronomic and fundamental interest. Functional genomics approaches aim to develop sufficient understanding needed to bridge the genotype-to-phenotype gap. In general terms, functional genomics approaches begin by using highly parallelized methods to analyze genomes, transcriptomes, proteomes, and metabolomes to generate hypotheses about genes that control phenotypes. Candidate genes are then tested for their contributions to phenotypes through various methods such as RNA silencing, genetic mutation, or overexpression. In this chapter, we review the current approaches, tools, and resources that are being applied for functional genomics research in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali AK, Lin J, Han J, Ibrahim KM, Jarjees MM, Qu F (2014) The 5’ untranslated region of Bean pod mottle virus RNA2 tolerates unusually large deletions or insertions. Virus Res 179:247–250

    Article  CAS  PubMed  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Anai T, Hoshino T, Imai N, Takagi Y (2012) Molecular characterization of two high-palmitic-acid mutant loci induced by X-ray irradiation in soybean. Breed Sci 61:631–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JE, Kantar MB, Kono TY, Fu F, Stec AO, Song Q, Cregan PB, Specht JE, Diers BW, Cannon SB, McHale LK, Stupar RM (2014) A roadmap for functional structural variants in the soybean genome. Genes Genomes Genet 4:1307–1318

    CAS  Google Scholar 

  • Arikit S, Xia R, Kakrana A, Huang K, Zhai J, Yan Z, Valdes-Lopez O, Prince S, Musket TA, Nguyen HT, Stacey G, Meyers BC (2014) An atlas of soybean small RNAs identifies phased siRNAs from hundreds of coding genes. Plant Cell 26:4584–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atwood SE, O’Rourke JA, Peiffer GA, Yin T, Majumder M, Zhang C, Cianzio SR, Hill JH, Cook D, Whitham SA, Shoemaker RC, Graham MA (2014) Replication protein A subunit 3 and the iron efficiency response in soybean. Plant Cell Environ 37:213–234

    Article  CAS  PubMed  Google Scholar 

  • Baltes NJ, Voytas DF (2015) Enabling plant synthetic biology through genome engineering. Trends Biotechnol 33:120–131

    Article  CAS  PubMed  Google Scholar 

  • Becker A (ed) (2013) Virus-induced gene silencing: methods and protocols. Methods in Molecular biology, vol 975. Springer, Berlin

    Google Scholar 

  • Belfield EJ, Gan X, Mithani A, Brown C, Jiang C, Franklin K, Alvey E, Wibowo A, Jung M, Bailey K, Kalwani S, Ragoussis J, Mott R, Harberd NP (2012) Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana. Genome Res 22:1306–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolon YT, Haun WJ, Xu WW, Grant D, Stacey MG, Nelson RT, Gerhardt DJ, Jeddeloh JA, Stacey G, Muehlbauer GJ, Orf JH, Naeve SL, Stupar RM, Vance CP (2011) Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean. Plant Physiol 156:240–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolon Y-T, Stec AO, Michno J-M, Roessler J, Bhaskar PB, Ries L, Dobbels AA, Campbell BW, Young NP, Anderson JE, Grant DM, Orf JH, Naeve SL, Muehlbauer GJ, Vance CP, Stupar RM (2014a) Genome resilience and prevalence of segmental duplications following fast neutron irradiation of soybean. Genetics 198:967–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolon YT, Stec AO, Michno JM, Roessler J, Bhaskar PB, Ries L, Dobbels AA, Campbell BW, Young NP, Anderson JE, Grant DM, Orf JH, Naeve SL, Muehlbauer GJ, Vance CP, Stupar RM (2014b) Genome resilience and prevalence of segmental duplications following fast neutron irradiation of soybean. Genetics 198:967–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon SB, Crow JA, Grant D (2012) SoyBase and the legume information system: accessing inormation about soybean and other legume genomes. In: Wilson RF (ed) Designing soybeans for 21st century markets. American Oil Chemists’ Society, Urbana, pp 49–62

    Google Scholar 

  • Carbonell A, Takeda A, Fahlgren N, Johnson SC, Cuperus JT, Carrington JC (2014) New generation of artificial MicroRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis. Plant Physiol 165:15–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonell A, Fahlgren N, Mitchell S, Cox KL Jr, Reilly KC, Mockler TC, Carrington JC (2015) Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors. Plant J 82:1061–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho YB, Jones SI, Vodkin LO (2013) The transition from primary siRNAs to amplified secondary siRNAs that regulate chalcone synthase during development of Glycine max seed coats. PLoS ONE 8:e76954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung W-H, Jeong N, Kim J, Lee WK, Lee Y-G, Lee S-H, Yoon W, Kim J-H, Choi I-Y, Choi H-K, Moon J-K, Kim N, Jeong S-C (2014) Population structure and domestication revealed by high-depth resequencing of Korean cultivated and wild soybean genomes. DNA Res 21:153–167

    Article  CAS  PubMed  Google Scholar 

  • Cook DE, Bayless AM, Wang K, Guo X, Song Q, Jiang J, Bent AF (2014) Distinct copy number, coding sequence, and locus methylation patterns underlie Rgh1-mediated soybean resistance to soybean cyst nematode. Plant Physiol 165:630–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, Bilyeu KD, Meksem K, Comai L, Henikoff S (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol 8:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooper B, Campbell KB, McMahon MB, Luster DG (2013) Disruption of Rpp1-mediated soybean rust immunity by virus-induced gene silencing. Plant Signal Behav 8:e27543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui Y, Barampuram S, Stacey MG, Hancock CN, Findley SS, Mathieu M, Zhang Z, Parrott WA, Stacey G (2013) Tnt1 retrotransposon mutagenesis: a tool for soybean functional genomics. Plant Physiol 161:36–47

    Article  CAS  PubMed  Google Scholar 

  • Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ, Reyon D, Dahlborg EJ, Goodwin MJ, Coffman AP, Dobbs D, Joung JK, Voytas DF, Stupar RM (2011) Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156:466–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtin SJ, Anderson JE, Starker CG, Baltes NJ, Mani D, Voytas DF, Stupar RM (2013) Targeted mutagenesis for functional analysis of gene duplication in legumes. Methods Mol Biol 1069:25–42

    Article  CAS  PubMed  Google Scholar 

  • Danzer J, Mellott E, Bui AQ, Le BH, Martin P, Hashimoto M, Perez-Lesher J, Chen M, Pelletier JM, Somers DA, Goldberg RB, Harada JJ (2015) Down-regulating the expression of 53 soybean transcription factor genes uncovers a role for SPEECHLESS in initiating stomatal cell lineages during embryo development. Plant Physiol 168:1025–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dierking EC, Bilyeu KD (2009) New sources of soybean seed meal and oil composition traits identified through TILLING. BMC Plant Biol 9:89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Souza SF, Reddy KS, Badigannavar AM, Manjaya JG, Jambhulkar SJ (2009) Mutation breeding in oilseeds and grain legumes in India: accomplishments and socio-economic impact. In: Shu Q (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations and the International Atomic Energy Agency, Rome, pp 55–57

    Google Scholar 

  • Dubey A, Farmer A, Schlueter J, Cannon SB, Abernathy B, Tutej R, Woodward J, Shah T, Mulasmanovic B, Kudapa H, Raju NL, Gothalwal R, Pande S, Xiao Y, Town CD, Singh NK, May GD, Jackson S, Varshney RK (2011) Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (Cajanus cajan L.). DNA Res 18:153–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felippes FF, Wang JW, Weigel D (2012) MIGS: miRNA-induced gene silencing. Plant J 70:541–547

    Article  PubMed  CAS  Google Scholar 

  • Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillman JD, Stacey MG, Cui Y, Berg HR, Stacey G (2014) Deletions of the SACPD-C locus elevate seed stearic acid levels but also result in fatty acid and morphological alterations in nitrogen fixing nodules. BMC Plant Biol 14:143

    Article  PubMed  PubMed Central  Google Scholar 

  • Gongora-Castillo E, Buell CR (2013) Bioinformatics challenges in de novo transcriptome assembly using short read sequenes in the absense of a reference genome sequence. Nat Prod Rep 30:490–500

    Article  CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2011) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit A, Adiconis X, Fan L, Raychowdhury R, Zheng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 15:644–652

    Article  CAS  Google Scholar 

  • Hancock CN, Zhang F, Floyd K, Richardson AO, LaFayette P, Tucker D, Wessler SR, Parrott WA (2011) The rice miniature inverted repeat transposable element mPing is an effective insertional mutagen in soybean. Plant Physiol 157:552–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haun WJ, Hyten DL, Xu WW, Gerhardt DJ, Albert TJ, Richmond T, Jeddeloh JA, Jia G, Springer NM, Vance CP, Stupar RM (2011) The composition and origins of genomic variation among individuals of the soybean reference cultivar Williams 82. Plant Physiol 155:645–655

    Article  CAS  PubMed  Google Scholar 

  • Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940

    Article  CAS  PubMed  Google Scholar 

  • Hoshino T, Takagi Y, Anai T (2010) Novel GmFAD2-1b mutant alleles created by reverse genetics induce marked elevation of oleic acid content in soybean seeds in combination with GmFAD2-1a mutant alleles. Breed Sci 60:419–425

    Article  CAS  Google Scholar 

  • Hossain MS, Joshi T, Stacey G (2015) System approaches to study root hairs as a single cell plant model: current status and future perspectives. Front Plant Sci 6:363

    PubMed  PubMed Central  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang WJ, Kim MY, Kang YJ, Shim S, Stacey MG, Stacey G, Lee SH (2014) Genome-wide analysis of mutations in a dwarf soybean mutant induced by fast neutron bombardment. Euphytica 203:399–408

    Article  Google Scholar 

  • Hyten DL, Song Q, Zhu Y, Choi IY, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA 103:16666–16671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jacobs TB, Lawler NJ, LaFayette PR, Vodkin LO, Parrott WA (2016) Simple gene silencing using the trans-acting siRNA pathway. Plant Biotechnol J 14:117–127

    Article  CAS  PubMed  Google Scholar 

  • Jones SI, Vodkin LO (2013) Using RNA-seq to profile soybean seed development from fertilization to maturity. PLoS ONE 8:e59270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi T, Patil K, Fitzpatrick MR, Franklin LD, Yao Q, Cook JR, Wang Z, Libault M, Brechenmacher L, Valliyodan B, Wu X, Cheng J, Stacey G, Nguyen HT, Xu D (2012) Soybean Knowledge Base (SoyKB): a web resource for soybean translational genomics. BMC Genom 13:S15

    Article  CAS  Google Scholar 

  • Juvale PS, Hewezi T, Zhang C, Kandoth PK, Mitchum MG, Hill JH, Whitham SA, Baum TJ (2012) Temporal and spatial Bean pod mottle virus-induced gene silencing in soybean. Mol Plant Pathol 13:1140–1148

    Article  CAS  PubMed  Google Scholar 

  • Kachroo A, Ghabrial S (2012) Virus-induced gene silencing in soybean. Methods Mol Biol 894:287–297

    Article  CAS  PubMed  Google Scholar 

  • Kandoth PK, Heinz R, Yeckel G, Gross NW, Juvale PS, Hill J, Whitham SA, Baum TJ, Mitchum MG (2013) A virus-induced gene silencing method to study soybean cyst nematode parasitism in Glycine max. BMC Res Notes 6:255

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato KK, Palmer RG (2003) Genetic identification of a female partial-sterile mutant in soybean. Genome 46:128–134

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Cogan NO, Pembleton LW, Shinozuka M, Savin KW, Materne M, Forster JW (2011) Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genom 12:265–276

    Article  CAS  Google Scholar 

  • Kharkwal MC, Shu QY (2009) The role of induced mutations in wold food securities. Paper presented at the induced plant mutations in the genomics era, Vienna, Austria

    Google Scholar 

  • Kim DS, Lee KJ, Kim JB, Kim SH, Song JY, Seo YW, Lee BM, Kang SY (2010a) Identification of Kunitz trypsin inhibitors mutations using SNAP markers in soybean mutant lines. Theor Appl Genet 121:751–760

    Article  CAS  PubMed  Google Scholar 

  • Kim MY, Lee S, Van K, Kim T-H, Jeong S-C, Choi I-Y, Kim D-S, Lee Y-S, Park D, Ma J, Kim W-Y, Kim B-C, Park S, Lee K-A, Kim DH, Kim KH, Shin JH, Jang YE, Kim KD, Liu WX, Chaisan T, Kang YJ, Lee Y-H, Kim K-H, Moon J-K, Schmutz J, Jackson SA, Bhak J, Lee S-H (2010b) Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc Natl Acad Sci USA 107:22032–22037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KH, Kang YJ, Kim DH, Yoon MY, Moon J-K, Kim MY, Van K, Lee S-H (2011) RNA-seq analysis of a soybean near-isogenic line carrying bacterial leaf pustule-resistant and -susceptible alleles. DNA Res 18:483–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu S, Nanjo Y, Nishimura M (2013) Proteomic analysis of the flooding tolerance mechanism in mutant soybean. J Proteom 79:231–250

    Article  CAS  Google Scholar 

  • Kour A, Boone AM, Vodkin LO (2014) RNA-seq profiling of a defective seed coat mutation in Glycine max reveals differential expression of proline-rich and other cell wall protein transcripts. PLoS ONE 9:e96342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kudapa H, Azam S, Sharpe AG, Taran B, Li R, Deonovic B, Cameron C, Farmer AD, Cannon SB, Varshney RK (2014) Comprehensive transcriptome assembly of chickpea (Cicer arietinum L.) using Sanger and next generation sequencing platforms: development and applications. PLoS ONE 9:e86039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lam H-M, Xu X, Liu X, Chen W, Yang G, Wong F-L, Li M-W, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS-M, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Lee KJ, Kim JB, Kim SH, Ha BK, Lee BM, Kang SY, Kim DS (2011) Alteration of seed storage protein composition in soybean [Glycine max (L.) Merrill] mutant lines induced by γ-irradiation mutagenesis. J Agric Food Chem 59:12405–12410

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Hwant JE, Velusamy V, Ha BK, Kim JB, Kim SH, Ahn JW, Kang SY, Kim DS (2014) Selection and molecular characerization of a lipoxygenase-free soybean mutant line induced by gamma irradiation. Theor Appl Genet 127:2405–2413

    Article  CAS  PubMed  Google Scholar 

  • Li C, Yoshikawa N (2015) Virus-induced gene silencing of N gene in tobacco by Apple latent spherical virus vectors. Methods Mol Biol 1236:229–240

    Article  CAS  PubMed  Google Scholar 

  • Li Y-H, Zhao S-C, Ma J-X, Li D, Yan L, Li J, Qi X-T, Guo X-S, Zhang L, He W-M, Chang R-Z, Liang Q-S, Guo Y, Ye C, Wang X-B, Tao Y, Guan R-X, Wang J-Y, Liu Y-L, Jin L-G, Zhang X-Q, Liu Z-X, Zhang L-J, Chen J, Wang K-J, Nielsen R, Li R-Q, Chen P-Y, Li W-B, Reif JC, Purugganan M, Wang J, Zhang M-C, Wang J, Qiu L-J (2013) Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genom 14:579

    Article  CAS  Google Scholar 

  • Li B, Fillmore N, Bai Y, Collins M, Thomson JA, Stewart R, Dewey CN (2014a) Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biol 15:553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y-H, Zhou G, Ma J, Jiang W, Jin L-G, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang S-S, Zuo Q, Shi X-H, Y-f Li, Zhang W-K, Hu Y, Kong G, Hong H-L, Tan B, Song J, Liu Z-X, Wang Y, Ruan H, Yeung CKL, Liu J, Wang H, Zhang L-J, Guan R-X, Wang K-J, Li W-B, Chen S-Y, Chang R-Z, Jiang Z, Jackson SA, Li R, Qiu L-J (2014b) de novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32:1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC, Cigan AM (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169:960–970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Libault M, Farmer A, Joshi T, Takahashi K, Langley RJ, Franklin LD, He J, Xu D, May G, Stacey G (2010) An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J 63:86–99

    CAS  PubMed  Google Scholar 

  • Lin F, Zhao M, Baumann DD, Ping J, Sun L, Liu Y, Zhang B, Tang Z, Hughes E, Doerge RW, Hughes TJ, Ma J (2014) Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics. BMC Genom 15:18

    Article  Google Scholar 

  • Liu X, Liu S, Jamai A, Bendahmane A, Lightfoot DA, Mitchum MG, Meksem K (2011) Soybean cyst nematode resistance in soybean is independent of the Rgh4 locus LRR-RLK gene. Funct Integr Genom 11:539–549

    Article  CAS  Google Scholar 

  • Liu S, Kandoth PK, Warren SD, Yeckel G, Heinz R, Alden J, Yang C, Jamai A, El-Mellouki T, Juvale PS, Hill J, Baum TJ, Cianzio S, Whitham SA, Korkin D, Mitchum MG, Meksem K (2012) A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492:256–260

    CAS  PubMed  Google Scholar 

  • Liu JZ, Graham MA, Pedley KF, Whitham SA (2015) Gaining insight into soybean defense responses using functional genomics approaches. Brief Funct Genom 14:283–290

    Article  Google Scholar 

  • Lu S, Yin X, Spollen W, Zhang N, Xu D, Schoelz J, Bilyeu K, Zhang ZJ (2015) Analysis of the siRNA-mediated gene silencing process targeting three homologous genes controlling soybean seed oil quality. PLoS ONE 10:e0129010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo S, Li J, Stoddard TJ, Baltes NJ, Demorest ZL, Clasen BM, Coffman A, Retterath A, Mathis L, Voytas DF, Zhang F (2015) Non-transgenic plant genome editing using purified sequence-specific nucleases. Mol Plant 8:1425–1427

    Article  CAS  PubMed  Google Scholar 

  • Mathieu M, Winters EK, Kong F, Wan J, Wang S, Eckert H, Luth D, Paz M, Donovan C, Zhang Z, Somers D, Wang K, Nguyen H, Shoemaker RC, Stacey G, Clemente T (2009) Establishment of a soybean (Glycine max Merr. L) transposon-based mutagenesis repository. Planta 229:279–289

    Article  CAS  PubMed  Google Scholar 

  • McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res 40:4288–4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McHale LK, Haun WJ, Xu WW, Bhaskar PB, Anderson JE, Hyten DL, Gerhardt DJ, Jeddeloh JA, Stupar RM (2012) Structural variants in the soybean genome localize to clusters of biotic stress-response genes. Plant Physiol 159:1295–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melito S, Heuberger AL, Cook D, Diers BW, MacGuidwin AE, Bent AF (2010) A nematode demographics assay in transgenic roots reveals no significant impacts of the Rhg1 locus LRR-Kinase on soybean cyst nematode resistance. BMC Plant Biol 10:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Men AE, Laniya TS, Searle IR, Iturbe-Ormaetxe I, Gresshoff I, Jiang Q, Carroll BJ, Gresshoff PM (2002) Fast neutron mutagenesis of soybean (Glycine soja L.) produces a supernodulating mutant containing a large deletion in linkage group H. Genome Lett 3:147–155

    Article  CAS  Google Scholar 

  • Meyer JDF, Silva DCG, Yang C, Pedley KF, Zhang C, van de Mortel M, Hill JH, Shoemaker RC, Abdelnoor RV, Whitham SA, Graham MA (2009) Identification and analyses of candidate genes for Rpp4-mediated resistance to Asian soybean rust in soybean. Plant Physiol 150:295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran Lauter AN, Peiffer GA, Yin T, Whitham SA, Cook D, Shoemaker RC, Graham MA (2014) Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves. BMC Genom 15:702

    Article  CAS  Google Scholar 

  • Nakagawa H (2009) Induced mutations in plant breeding and biological researches in Japan. Paper presented at the induced plant mutations in the genomics era, Vienna, Austria

    Google Scholar 

  • O’Rourke J, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Bozsoki Z, Uhde-Stone C, Tu ZJ, Allan D, Gronwald JW, Vance CP (2013a) An RNA-seq transcriptome analysis of orthophosphate deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol 161:705–724

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke JA, Iniguez LP, Bucciarelli B, Roessler J, Schmutz J, McClean PE, Jackson SA, Hernandez G, Graham MA, Stupar RM, Vance CP (2013b) A re-sequencing based assessment of genomic heterogeneity and fast neutron-induced deletions in a common bean cultivar. Front Plant Sci 4:210

    PubMed  PubMed Central  Google Scholar 

  • O’Rourke JA, Fu F, Bucciarelli B, Yang SS, Samac DA, Lamb JF, Monteros MJ, Graham MA, Gronwald JW, Krom N, Li J, Dai X, Zhao PX, Vance CP (2015) The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies. BMC Genom 16:502

    Article  CAS  Google Scholar 

  • Pandey AK, Yang C, Zhang C, Graham MA, Horstman HD, Lee Y, Zabotina OA, Hill JH, Pedley K, Whitham SA (2011) Functional analysis of the Asian soybean rust resistance pathway mediated by Rpp2. Mol Plant Microbe Interact 24:194–206

    Article  CAS  PubMed  Google Scholar 

  • Peiffer GA, King KE, Severin AJ, May GD, Cianzio SR, Lin SF, Lauter NC, Shoemaker RC (2012) Identification of candidate genes underlying an iron efficiency quantitative trait locus in soybean. Plant Physiol 158:1745–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi X, Li M-W, Xie M, Liu X, Ni M, Shao G, Song C, Kay-Yuen Yim A, Tao Y, Wong F-L, Isobe S, Wong C-F, Wong K-S, Xu C, Li C, Wang Y, Guan R, Sun F, Fan G, Xiao Z, Zhou F, Phang T-H, Liu X, Tong S-W, Chan T-F, Yiu S-M, Tabata S, Wang J, Xu X, Lam H-M (2014) Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun 5:4340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman SM, Takagi Y, Kubota K, Miyamoto K, Kawakita T (1994) High oleic acid mutant in soybean induced by X-ray irradiation. Biosci Biotechnol Biochem 58:1070–1072

    Article  CAS  Google Scholar 

  • Rahman SM, Takagi Y, Miyamoto K, Kawakita T (1995) High stearic acid soybean mutant induced by X-ray irradiation. Biosci Biotechnol Biochem 59:922–923

    Article  CAS  Google Scholar 

  • Rao SS, El-Habbak MH, Havens WM, Singh A, Zheng D, Vaughn L, Haudenshield JS, Hartman GL, Korban SS, Ghabrial SA (2013) Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress. Mol Plant Pathol 15:145–160

    Article  PubMed  CAS  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:1

    Article  CAS  Google Scholar 

  • Rode NW, Bernard RL (1975) Inheritance of a tan saddle mutant. Soybean Genet Newsl 2:39–42

    Google Scholar 

  • Schmitz RJ (2014) The secret garden—epigenetic alleles underlie complex traits. Science 343:1082–1083

    Article  CAS  PubMed  Google Scholar 

  • Schmitz RJ, He Y, Valdez-Lopez O, Khan SM, Joshi T, Urich MA, Nery JR, Diers B, Xu D, Stacey G, Ecker JR (2013) Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res 23:1633–1674

    Article  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Severin AJ, Woody JL, Bolon YT, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ, Nelson RT, Grant D, Specht JE, Graham MA, Cannon SB, May GD, Vance CP, Shoemaker RC (2010) RNA-seq atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song Y, Ji D, Li S, Weng P, Li Q, Xiang F (2012) The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS ONE 7:e41274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song QX, Lu X, Li QT, Chen H, Hu XY, Ma B, Zhang WK, Chen SY, Zhang JS (2013) Genome-wide analysis of DNA methylation in soybean. Mol Plant 6:1961–1974

    Article  CAS  PubMed  Google Scholar 

  • Srisombun S, Srinives P, Yathaputanon C, Dangpradub S, Malipan A, Srithongchai W, Kumsueb B, Tepjun V, Ngampongsai S, Kornthong A, Impithuksa S (2009) Achievements of grain legume variety improvement using induced mutation of the IAEA/RAS/5/040 project in Thailand. Paper presented at the induced plant mutations in the genomics era, Vienna, Austria

    Google Scholar 

  • Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5:10342

    Article  PubMed  PubMed Central  Google Scholar 

  • Takagi Y, Hossain ABMM, Yanagita T, Kusaba S (1989) High linolenic acid mutant in soybean induced by X-ray irradiation. Jpn J Breed 39:403–409

    Article  CAS  Google Scholar 

  • Takahashi R, Yamagishi N, Yoshikawa N (2013) A MYB transcription factor controls flower color in soybean. J Hered 104:149–153

    Article  CAS  PubMed  Google Scholar 

  • Tran LS, Mochida K (2010) Functional genomics of soybean for improvement of productivity in adverse conditions. Funct Integr Genom 10:447–462

    Article  CAS  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay A, Hosseini P, Li S, Alkharouf NW, Matthews BF (2013) Analysis of Phakopsora pachyrhizi transcript abundance in critical pathways at four time-points during infection of a susceptible soybean cultivar using deep sequencing. BMC Genom 14:614

    Article  CAS  Google Scholar 

  • Whitham SA, Eggenberger AL, Zhang C, Chowda-Reddy RV, Martin KM, Hill JH (2015) Recent advances in in planta transient expression and silencing systems for soybean using viral vectors. In: Azhakanandam K, Silverstone A, Daniell H, Davey MR (eds) Recent advancements in gene expression and enabling technologies in crop plants. Springer, New York, pp 423–451

    Chapter  Google Scholar 

  • Whitham SA, Lincoln LM, Chowda-Reddy RV, Dittman JD, O’Rourke JA, Graham MA (2016a) Virus-induced gene silencing and transient gene expression in soybean (Glycine max) using Bean pod mottle virus infectious clones. In: Stacey G, Birchler JA, Ecker J, Martin C, Stitt M, Zhou J-M (eds) Current protocols in plant biology. Wiley, Hoboken

    Google Scholar 

  • Whitham SA, Qi M, Innes RW, Ma W, Lopes-Caitar V, Hewezi T (2016b) Molecular soybean-pathogen interactions. Annu Rev Phytopathol 54:443–468

    Google Scholar 

  • Wong J, Gao L, Yang Y, Zhai J, Arikit S, Yu Y, Duan S, Chan V, Xiong Q, Yan J, Li S, Liu R, Wang Y, Tang G, Meyers BC, Chen X, Ma W (2014) Roles of small RNAs in soybean defense against Phytophthora sojae infection. Plant J 79:928–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie K, Zhang J, Yang Y (2014) Genome-wide prediction of highly specific guide RNA spacers for CRISPR–Cas9-mediated genome editing in model plants and major crops. Mol Plant 7:923–926

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zeng L, Tao Y, Vuong T, Wan J, Boerma R, Noe J, Li Z, Finnerty S, Pathan SM, Shannon JG, Nguyen HT (2013) Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci USA 110:13469–13474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada T, Mori Y, Yasue K, Maruyama N, Kitamura K, Abe J (2014) Knockdown of the 7S globulin subunits shifts distribution of nitrogen sources to the residual protein fraction in transgenic soybean seeds. Plant Cell Rep 33:1963–1976

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi N, Yoshikawa N (2009) Virus-induced gene silencing in soybean seeds and the emergence stage of soybean plants with Apple latent spherical virus vectors. Plant Mol Biol 71:15–24

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi N, Yoshikawa N (2013) Highly efficient virus-induced gene silencing in apple and soybean by Apple latent spherical virus vector and biolistic inoculation. Methods Mol Biol 975:167–181

    Article  CAS  PubMed  Google Scholar 

  • Yang SS, Tu ZJ, Cheung F, Xu WW, Lamb JFS, Jung HJG, Vance CP, Gronwald JW (2011) Using RNA-seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergene cell wall composition in stems. BMC Genom 12:199

    Article  CAS  Google Scholar 

  • Young WP, Schupp JM, Keim P (1999) DNA methylation and AFLP marker distribution in the soybean genome. Theor Appl Genet 99:785–790

    Article  CAS  Google Scholar 

  • Yuan FJ, Zhu DH, Tan YY, Dong DK, Fu XJ, Zhu SL, Li BQ, Shu QY (2012) Identification and characterization of the soybean IPK1 ortholog of a low phytic acid mutant reveals an exon-excluding splice-site mutation. Theor Appl Genet 125:1413–1423

    Article  CAS  PubMed  Google Scholar 

  • Zabala G, Vodkin LO (2014) Methylation affects transposition and splicing of a large CACTA transposon from a MYB transcription factor regulating anthocyanin synthase genes in soybean seed coats. PLoS ONE 9:e111959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zabala G, Campos E, Varala KK, Bloomfield S, Jones SI, Win H, Tuteja JH, Calla B, Clough SJ, Hudson M, Vodkin LO (2012) Divergent patterns of endogenous small RNA populations from seed and vegetative tissues of Glycine max. BMC Plant Biol 12:177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Ghabrial SA (2006) Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean. Virology 344:401–411

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Yang C, Whitham SA, Hill JH (2009) Development and use of an efficient DNA-based viral gene silencing vector for soybean. Mol Plant Microbe Interact 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Bradshaw JD, Whitham SA, Hill JH (2010) The development of an efficient multipurpose Bean pod mottle virus viral vector set for foreign gene expression and RNA silencing. Plant Physiol 153:52–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Grosic S, Whitham SA, Hill JH (2012) The requirement of multiple defense genes in soybean Rsv1-mediated extreme resistance to Soybean mosaic virus. Mol Plant Microbe Interact 25:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Whitham SA, Hill JH (2013) Virus-induced gene silencing in soybean and common bean. Methods Mol Biol 975:149–156

    Article  CAS  PubMed  Google Scholar 

  • Zhong X, Wang Y, Liu X, Gong L, Ma Y, Qi B, Dong Y, Liu B (2009) DNA methylation polymorphism in annual wild soybean (Glycine soja Sieb. et Zucc) and cultivated soybean (G. max L. Merr.). Can J Plant Sci 89:851–863

    Article  Google Scholar 

  • Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee S-H, Wang W, Tian Z (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Schupp JM, Oliphant A, Keim P (1994) Hypomethylated sequences: characterization of the duplicate soybean genome. Mol Genet Genom 244:638–645

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by USDA-ARS Project 3625-21220-005-00D, the Iowa Soybean Association, the United Soybean Board Project Number 1204, USDA NIFA Hatch Project 3808, and State of Iowa funds. The USDA is an equal opportunity provider and employer. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Whitham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

O’Rourke, J.A., Graham, M.A., Whitham, S.A. (2017). Soybean Functional Genomics: Bridging the Genotype-to-Phenotype Gap. In: Nguyen, H., Bhattacharyya, M. (eds) The Soybean Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-64198-0_10

Download citation

Publish with us

Policies and ethics