Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1059 Accesses

Abstract

In the introduction to his 1929 paper on many-electron systems (Dirac, Proc R Soc Lond Ser A, 123:714, 1929, [1]), Dirac envisioned that the two problems facing quantum mechanics were “in connection with the exact fitting in of the theory with relativity ideas” on the one hand, and the fact that “the exact application of these laws leads to equations much too complicated to be soluble” on the other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We assume the basic postulates and formalism of quantum mechanics [4, 5] to be in place, as well as all mathematical concepts and techniques. We refer to Ref. [6] for a modern overview.

  2. 2.

    We will always ignore the mathematical difficulties of defining this thermodynamic limit.

  3. 3.

    The concepts in this section can be found in more detail in standard textbooks on quantum many-body systems [9, 10, 13,14,15].

  4. 4.

    The number of lattice sites is denoted as \(|\mathcal {L}|\), which, in the thermodynamic limit, is sent to infinity.

  5. 5.

    We denote \(\vec {n}_i\) as the lattice vector of site i.

  6. 6.

    Note that the static structure factor is regained from the dynamic correlations as

    $$\begin{aligned} s(\vec {q}) = \int \mathrm {d}\omega \; S(\vec {q},\omega ). \end{aligned}$$
  7. 7.

    We refer to Chap. 3 for a worked-out version of the particle interpretation of elementary excitations.

  8. 8.

    In the following chapters we will also mention a few experimental realizations of the specific models that we will study.

  9. 9.

    We refer to Ref. [23] for all details on magnetic materials.

  10. 10.

    The results mentioned in this section are laid out in exquisite detail in Ref. [52].

  11. 11.

    See also Ref. [73].

  12. 12.

    This definition of the two-particle S matrix will be discussed in full detail in Chap. 3.

  13. 13.

    This section should be more or less self-contained, but the reader is referred to review papers [189,190,191] for more details.

  14. 14.

    The generic case excludes the cases where the MPS can be written as (i) the superposition of multiple translation-invariant MPSs with smaller bond dimension or (ii) the superposition of p p-periodic states each of which can be written as an MPS. The condition under which an MPS is generic is related to the injectivity of the MPS, which means that by concatenating enough A tensors the map from the virtual space to the physical one becomes injective, and to the fact that there is only eigenvalue of \(\mathcal {E}\) on the unit circle [221].

  15. 15.

    We refer to the reviews [189, 191, 202] for a detailed account.

References

  1. P.A.M. Dirac, Quantum mechanics of many-electron systems. Proc. R. Soc. Lond. Ser. A 123, 714 (1929). doi:10.1098/rspa.1929.0094

    Article  ADS  MATH  Google Scholar 

  2. E. Schrödinger, Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 31, 555 (1935). doi:10.1017/S0305004100013554

    Article  ADS  MATH  Google Scholar 

  3. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935). doi:10.1103/PhysRev.47.777

    Article  ADS  MATH  Google Scholar 

  4. P.A.M. Dirac, Note on exchange phenomena in the Thomas atom. Math. Proc. Camb. Philos. Soc. 26, 376 (1930). doi:10.1017/S0305004100016108

    Article  ADS  MATH  Google Scholar 

  5. J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)

    MATH  Google Scholar 

  6. J.J. Sakurai, Modern Quantum Mechanics (The Benjamin/Cummings Publishing Company Inc, San Francisco, 1985)

    Google Scholar 

  7. J. Hubbard, Electron correlations in narrow energy bands. Proc. R. Soc. A Math. Phys. Eng. Sci. 276, 238 (1963). doi:10.1098/rspa.1963.0204

    Google Scholar 

  8. F.H.L. Essler, H. Frahm, F. Göhmann, A. Klümper, V.E. Korepin, The One-Dimensional Hubbard Model (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  9. A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer, Berlin, 1994)

    Book  Google Scholar 

  10. A. Altland, B. Simons, Condensed Matter Field Theory (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  11. W. Heisenberg, Zur Theorie des Ferromagnetismus. Zeitschrift für Physik 49, 619 (1928). doi:10.1007/BF01328601

    Article  ADS  MATH  Google Scholar 

  12. P.W. Anderson, Antiferromagnetism. theory of superexchange interaction. Phys. Rev. 79, 350 (1950). doi:10.1103/PhysRev.79.350

    Article  ADS  MATH  Google Scholar 

  13. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, San Francisco, 1971)

    Google Scholar 

  14. A.M. Tsvelik, Quantum Field Theory in Condensed Matter Physics (Cambridge University Press, Cambridge, 1995)

    MATH  Google Scholar 

  15. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2011)

    Book  MATH  Google Scholar 

  16. L. Landau, On the theory of phase transitions. Zh. Eksp. Teor. Fiz. 7, 19 (1937)

    Google Scholar 

  17. P. Pfeuty, The one-dimensional Ising model with a transverse field. Ann. Phys. 57, 79 (1970). doi:10.1016/0003-4916(70)90270-8

    Article  ADS  Google Scholar 

  18. N.F. Mott, The basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soc. Sect. A 62, 416 (1949). doi:10.1088/0370-1298/62/7/303

    Article  ADS  Google Scholar 

  19. M. Imada, A. Fujimori, Y. Tokura, Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998). doi:10.1103/RevModPhys.70.1039

    Article  ADS  Google Scholar 

  20. J.G. Bednorz, K.A. Müller, Possible high \(T_c\) superconductivity in the Ba-La-Cu-O system. Zeitschrift für Physik B Condensed Matter 64, 189 (1986). doi:10.1007/BF01303701

    Article  ADS  Google Scholar 

  21. C. Broholm, G. Aeppli, Dynamic correlations in quantum magnets, Strong Interactions in Low Dimensions (Springer, Netherlands, 2004), pp. 21–61. doi:10.1007/978-1-4020-3463-3_2

  22. S.T. Bramwell, Neutron scattering in highly frustrated magnetism, in Introduction to Frustrated Magnetism, ed. by C. Lacroix, F. Mila, P. Mendels (Springer, Berlin, 2011), pp. 45–78. doi:10.1007/978-3-642-10589-0

  23. C. Lacroix, P. Mendels, F. Mila, Introduction to Frustrated Magnetism (Springer, Berlin, 2011)

    Book  Google Scholar 

  24. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose-Einstein Condensation in a dilute atomic vapor. Science 269, 198 (1995). doi:10.1126/science.269.5221.198

    Article  ADS  Google Scholar 

  25. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995). doi:10.1103/PhysRevLett.75.3969

    Article  ADS  Google Scholar 

  26. I. Bloch, Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23 (2005). doi:10.1038/nphys138

    Article  Google Scholar 

  27. I. Bloch, W. Zwerger, Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008). doi:10.1103/RevModPhys.80.885

    Article  ADS  Google Scholar 

  28. I. Bloch, J. Dalibard, S. Nascimbène, Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267 (2012). doi:10.1038/nphys2259

    Article  Google Scholar 

  29. M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546 (1989). doi:10.1103/PhysRevB.40.546

    Article  ADS  Google Scholar 

  30. D. Jaksch, C. Bruder, J.I. Cirac, C. Gardiner, P. Zoller, Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108 (1998). doi:10.1103/PhysRevLett.81.3108

    Article  ADS  Google Scholar 

  31. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002). doi:10.1038/415039a

    Article  ADS  Google Scholar 

  32. B. Paredes, A. Widera, V. Murg, O. Mandel, S. Folling, J.I. Cirac, G.V. Shlyapnikov, T.W. Hänsch, I. Bloch, Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277 (2004), http://www.nature.com/nature/journal/v429/n6989/suppinfo/nature02530_S1.html

  33. T. Kinoshita, T. Wenger, D.S. Weiss, Observation of a one-dimensional Tonks-Girardeau gas. Science 305, 1125 (2004). doi:10.1126/science.1100700

    Article  ADS  Google Scholar 

  34. T. Kinoshita, T. Wenger, D.S. Weiss, A quantum Newton’s cradle. Nature 440, 900 (2006), http://www.nature.com/nature/journal/v440/n7086/suppinfo/nature04693_S1.html

  35. J. Simon, W.S. Bakr, R. Ma, M.E. Tai, P.M. Preiss, M. Greiner, Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307 (2011). doi:10.1038/nature09994

    Article  ADS  Google Scholar 

  36. J. Struck, C. Olschlager, R. Le Targat, P. Soltan-Panahi, A. Eckardt, M. Lewenstein, P. Windpassinger, K. Sengstock, Quantum simulation of frustrated classical magnetism in triangular optical lattices. Science 333, 996 (2011). doi:10.1126/science.1207239

    Article  ADS  Google Scholar 

  37. R. Blatt, C.F. Roos, Quantum simulations with trapped ions. Nat. Phys. 8, 277 (2012). doi:10.1038/nphys2252

    Article  Google Scholar 

  38. D. Porras, J.I. Cirac, Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004). doi:10.1103/PhysRevLett.92.207901

    Article  ADS  Google Scholar 

  39. A. Aspuru-Guzik, P. Walther, Photonic quantum simulators. Nat. Phys. 8, 285 (2012). doi:10.1038/nphys2253

    Article  Google Scholar 

  40. X.-S. Ma, B. Dakic, W. Naylor, A. Zeilinger, P. Walther, Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems. Nat. Phys. 7, 399 (2011). doi:10.1038/nphys1919

    Article  Google Scholar 

  41. J.I. Cirac, P. Zoller, Goals and opportunities in quantum simulation. Nat. Phys. 8, 264 (2012). doi:10.1038/nphys2275

    Article  Google Scholar 

  42. I. Buluta, F. Nori, Quantum simulators. Science 326, 108 (2009). doi:10.1126/science.1177838

    Article  ADS  Google Scholar 

  43. R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. (1982), http://www.springerlink.com/index/T2X8115127841630.pdf

  44. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  45. T.J. Osborne, M.A. Nielsen, Entanglement, quantum phase transitions, and density matrix renormalization. Quantum Inf. Process. 1, 45 (2002). doi:10.1023/A:1019601218492

    Article  MathSciNet  Google Scholar 

  46. G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003). doi:10.1103/PhysRevLett.90.227902

    Article  ADS  Google Scholar 

  47. A. Kitaev, J. Preskill, Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006). doi:10.1103/PhysRevLett.96.110404

    Article  ADS  MathSciNet  Google Scholar 

  48. M. Levin, X.-G. Wen, Detecting topological order in a ground state wave function. Phys. Rev. Lett. 96, 110405 (2006). doi:10.1103/PhysRevLett.96.110405

    Article  ADS  Google Scholar 

  49. X. Chen, Z.-C. Gu, X.-G. Wen, Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82, 155138 (2010). doi:10.1103/PhysRevB.82.155138

    Article  ADS  Google Scholar 

  50. J. Preskill, Quantum Information and Computation (Lecture Notes) (2016), http://www.theory.caltech.edu/people/preskill/ph229/

  51. J. Preskill, Quantum information and physics: some future directions. J. Mod. Opt. 47, 127 (2000). doi:10.1080/09500340008244031

  52. M.B. Hastings, Locality in Quantum Systems (2010), arXiv:1008.5137

  53. J. Eisert, M. Cramer, M.B. Plenio, Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277 (2010). doi:10.1103/RevModPhys.82.277

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. E.H. Lieb, D.W. Robinson, The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251 (1972). doi:10.1007/BF01645779

    Article  ADS  MathSciNet  Google Scholar 

  55. M.B. Hastings, T. Koma, Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781 (2006). doi:10.1007/s00220-006-0030-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. M.B. Hastings, An area law for one-dimensional quantum systems. J. Stat. Mech. Theory Exp. 2007, P08024 (2007). doi:10.1088/1742-5468/2007/08/P08024

    MathSciNet  Google Scholar 

  57. P. Calabrese, J. Cardy, Entanglement entropy and quantum field theory. J. Stat. Mech. Theory Exp. 2004, P06002 (2004). doi:10.1088/1742-5468/2004/06/P06002

    MathSciNet  MATH  Google Scholar 

  58. F. Verstraete, J.I. Cirac, Matrix product states represent ground states faithfully. Phys. Rev. B 73, 094423 (2006). doi:10.1103/PhysRevB.73.094423

    Article  ADS  Google Scholar 

  59. Z. Landau, U. Vazirani, T. Vidick, A polynomial-time algorithm for the ground state of 1D gapped local Hamiltonians (2013), arXiv:1307.5143

  60. V. Coffman, J. Kundu, W.K. Wootters, Distributed entanglement. Phys. Rev. A 61, 052306 (2000). doi:10.1103/PhysRevA.61.052306

    Article  ADS  Google Scholar 

  61. T.J. Osborne, F. Verstraete, General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006). doi:10.1103/PhysRevLett.96.220503

    Article  ADS  Google Scholar 

  62. N.D. Mermin, H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133 (1966). doi:10.1103/PhysRevLett.17.1133

    Article  ADS  Google Scholar 

  63. P.C. Hohenberg, Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383 (1967). doi:10.1103/PhysRev.158.383

    Article  ADS  Google Scholar 

  64. S. Coleman, There are no Goldstone bosons in two dimensions. Commun. Math. Phys. 31, 259 (1973). doi:10.1007/bf01646487

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. P.W. Anderson, An approximate quantum theory of the antiferromagnetic ground state. Phys. Rev. 86, 694 (1952). doi:10.1103/PhysRev.86.694

    Article  ADS  MATH  Google Scholar 

  66. S. Chakravarty, B.I. Halperin, D.R. Nelson, Two-dimensional quantum Heisenberg antiferromagnet at low temperatures. Phys. Rev. B 39, 2344 (1989). doi:10.1103/PhysRevB.39.2344

    Article  ADS  Google Scholar 

  67. H. Bethe, Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette. Zeitschrift für Physik 71, 205 (1931). doi:10.1007/BF01341708

  68. L. Hulthén, Über das Austauschproblem eines Kristalles. Arkiv för matematik, astronomi och fysik 26A, 11 (1938)

    MATH  Google Scholar 

  69. R. Kubo, The spin-wave theory of antiferromagnetics. Phys. Rev. 87, 568 (1952). doi:10.1103/PhysRev.87.568

    Article  ADS  MATH  Google Scholar 

  70. T. Oguchi, Theory of spin-wave interactions in ferro- and antiferromagnetism. Phys. Rev. 117, 117 (1960). doi:10.1103/PhysRev.117.117

    Article  ADS  MATH  Google Scholar 

  71. T. Holstein, H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098 (1940). doi:10.1103/PhysRev.58.1098

    Article  ADS  MATH  Google Scholar 

  72. F.J. Dyson, General theory of spin-wave interactions. Phys. Rev. 102, 1217 (1956). doi:10.1103/PhysRev.102.1217

    Article  ADS  MathSciNet  Google Scholar 

  73. T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  74. E.H. Lieb, T. Schultz, D. Mattis, Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407 (1961). doi:10.1016/0003-4916(61)90115-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. I. Affleck, E.H. Lieb, A proof of part of Haldane’s conjecture on spin chains. Lett. Math. Phys. 12, 57 (1986). doi:10.1007/BF00400304

    Article  ADS  MathSciNet  Google Scholar 

  76. F.D.M. Haldane, Continuum dynamics of the 1-D Heisenberg antiferromagnet: identification with the O(3) nonlinear sigma model. Phys. Lett. A 93, 464 (1983). doi:10.1016/0375-9601(83)90631-X

    Article  ADS  MathSciNet  Google Scholar 

  77. F.D.M. Haldane, Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis nNeel state. Phys. Rev. Lett. 50, 1153 (1983). doi:10.1103/PhysRevLett.50.1153

    Article  ADS  MathSciNet  Google Scholar 

  78. I. Affleck, Quantum spin chains and the Haldane gap. J. Phys. Condens. Matter 1, 3047 (1989), http://cat.inist.fr/?aModele=afficheN&cpsidt=6916826

  79. I. Affleck, T. Kennedy, E.H. Lieb, H. Tasaki, Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799 (1987). doi:10.1103/PhysRevLett.59.799

    Article  ADS  Google Scholar 

  80. I. Affleck, T. Kennedy, E.H. Lieb, H. Tasaki, Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys. 115, 477 (1988). doi:10.1007/BF01218021

    Article  ADS  MathSciNet  Google Scholar 

  81. M. Nightingale, H. Blöte, Gap of the linear spin-1 Heisenberg antiferromagnet: a Monte Carlo calculation. Phys. Rev. B 33, 659 (1986). doi:10.1103/PhysRevB.33.659

    Article  ADS  Google Scholar 

  82. F.D.M. Haldane, Errata. Phys. Lett. A 81, 545 (1981). doi:10.1016/0375-9601(81)90464-3

    Article  MathSciNet  Google Scholar 

  83. A. Imambekov, T.L. Schmidt, L.I. Glazman, One-dimensional quantum liquids: beyond the Luttinger liquid paradigm. Rev. Mod. Phys. 84, 1253 (2012). doi:10.1103/RevModPhys.84.1253

    Article  ADS  Google Scholar 

  84. F.D.M. Haldane, Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840 (1981). doi:10.1103/PhysRevLett.47.1840

    Article  ADS  Google Scholar 

  85. F.D.M. Haldane, Demonstration of the Luttinger liquid character of Bethe-ansatz-soluble models of 1-D quantum fluids. Phys. Lett. 81, 153 (1981), http://www.sciencedirect.com/science/article/pii/0375960181900499

  86. F.D.M. Haldane, General relation of correlation exponents and spectral properties of one-dimensional fermi systems: application to the anisotropic S \(=\) 1/2 Heisenberg chain. Phys. Rev. Lett. 45, 1358 (1980). doi:10.1103/PhysRevLett.45.1358

    Article  ADS  MathSciNet  Google Scholar 

  87. S.-I. Tomonaga, Remarks on Bloch’s method of sound waves applied to many-fermion problems. Prog. Theor. Phys. 5, 544 (1950). doi:10.1143/ptp/5.4.544

    Article  ADS  MathSciNet  Google Scholar 

  88. J.M. Luttinger, An exactly soluble model of a many-fermion system. J. Math. Phys. 4, 1154 (1963). doi:10.1063/1.1704046

    Article  ADS  MathSciNet  Google Scholar 

  89. J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University Press, Cambridge, 1996)

    Book  MATH  Google Scholar 

  90. L.D. Faddeev, L.A. Takhtajan, What is the spin of a spin wave? Phys. Lett. A 85, 375 (1981). doi:10.1016/0375-9601(81)90335-2

    Article  ADS  MathSciNet  Google Scholar 

  91. F.D.M. Haldane, Fractional statistics in arbitrary dimensions: a generalization of the Pauli principle. Phys. Rev. Lett. 67, 937 (1991). doi:10.1103/PhysRevLett.67.937

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, One dimensional bosons: from condensed matter systems to ultracold gases. Rev. Mod. Phys. 83, 1405 (2011). doi:10.1103/RevModPhys.83.1405

    Article  ADS  Google Scholar 

  93. L. Balents, Spin liquids in frustrated magnets. Nature 464, 199 (2010). doi:10.1038/nature08917

    Article  ADS  Google Scholar 

  94. C. Lhuillier, G. Misguich, Introduction to quantum spin liquids, in Introduction to Frustrated Magnetism, ed. by C. Lacroix, F. Mila, P. Mendels (Springer, Berlin, 2011), pp. 23–44. doi:10.1007/978-3-642-10589-0

  95. L. Savary, L. Balents, Quantum Spin Liquids (2016), arXiv:1601.03742

  96. P. Anderson, Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153 (1973). doi:10.1016/0025-5408(73)90167-0

    Article  Google Scholar 

  97. P.W. Anderson, The resonating valence bond state in La\(_2\)CuO\(_4\) and superconductivity. Science 235, 1196 (1987). doi:10.1126/science.235.4793.1196

    Article  ADS  Google Scholar 

  98. S. Yan, D.A. Huse, S.R. White, Spin-liquid ground state of the S \(=\) 1/2 Kagome Heisenberg antiferromagnet. Science 332, 1173 (2011). doi:10.1126/science.1201080

    Article  ADS  Google Scholar 

  99. H.-C. Jiang, Z. Wang, L. Balents, Identifying topological order by entanglement entropy. Nat. Phys. 8, 902 (2012). doi:10.1038/nphys2465

    Article  Google Scholar 

  100. Y. Iqbal, F. Becca, S. Sorella, D. Poilblanc, Gapless spin-liquid phase in the kagome spin-1/2 Heisenberg antiferromagnet. Phys. Rev. B 87, 060405 (2013). doi:10.1103/PhysRevB.87.060405

    Article  ADS  Google Scholar 

  101. Z. Zhu, S.R. White, Spin liquid phase of the S \(=\) 1/2 \(J_1\)-\(J_2\) Heisenberg model on the triangular lattice. Phys. Rev. B 92, 041105 (2015). doi:10.1103/PhysRevB.92.041105

    Article  ADS  Google Scholar 

  102. W.-J. Hu, S.-S. Gong, W. Zhu, D.N. Sheng, Competing spin-liquid states in the spin-1/2 Heisenberg model on the triangular lattice. Phys. Rev. B 92, 140403 (2015). doi:10.1103/PhysRevB.92.140403

    Article  ADS  Google Scholar 

  103. X.G. Wen, Topological order in rigid states. Int. J. Mod. Phys. B 04, 239 (1990). doi:10.1142/S0217979290000139

    Article  ADS  MathSciNet  Google Scholar 

  104. B. Zeng, X. Chen, D.-L. Zhou, X.-G. Wen, Quantum Information Meets Quantum Matter – From Quantum Entanglement to Topological Phase in Many-Body Systems (2015), arXiv:1508.02595

  105. X.G. Wen, Vacuum degeneracy of chiral spin states in compactified space. Phys. Rev. B 40, 7387 (1989). doi:10.1103/PhysRevB.40.7387

    Article  ADS  Google Scholar 

  106. D.P. Arovas, J.R. Schrieffer, F. Wilczek, Fractional statistics and the quantum hall effect. Phys. Rev. Lett. 53, 722 (1984). doi:10.1103/PhysRevLett.53.722

    Article  ADS  Google Scholar 

  107. B.I. Halperin, Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, 1583 (1984). doi:10.1103/PhysRevLett.52.1583

    Article  ADS  Google Scholar 

  108. X.G. Wen, Non-Abelian statistics in the fractional quantum Hall states. Phys. Rev. Lett. 66, 802 (1991). doi:10.1103/PhysRevLett.66.802

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. G. Moore, N. Read, Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362 (1991). doi:10.1016/0550-3213(91)90407-o

    Article  ADS  MathSciNet  Google Scholar 

  110. B.I. Halperin, Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185 (1982). doi:10.1103/PhysRevB.25.2185

    Article  ADS  Google Scholar 

  111. A.H. MacDonald, Edge states in the fractional-quantum-Hall-effect regime. Phys. Rev. Lett. 64, 220 (1990). doi:10.1103/PhysRevLett.64.220

    Article  ADS  Google Scholar 

  112. X.G. Wen, Gapless boundary excitations in the quantum Hall states and in the chiral spin states. Phys. Rev. B 43, 11025 (1991). doi:10.1103/PhysRevB.43.11025

    Article  ADS  Google Scholar 

  113. D.C. Tsui, H.L. Stormer, A.C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559 (1982). doi:10.1103/PhysRevLett.48.1559

    Article  ADS  Google Scholar 

  114. R.B. Laughlin, Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395 (1983). doi:10.1103/PhysRevLett.50.1395

    Article  ADS  Google Scholar 

  115. E. Dennis, A. Kitaev, A. Landahl, J. Preskill, Topological quantum memory. J. Math. Phys. 43, 4452 (2002). doi:10.1063/1.1499754

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. A. Kitaev, Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003). doi:10.1016/S0003-4916(02)00018-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  117. D.R. Hartree, The wave mechanics of an atom with a non-coulomb central field. Part I. Theory and methods. Math. Proc. Camb. Philos. Soc. 24, 89 (1928). doi:10.1017/S0305004100011919

    Article  ADS  MATH  Google Scholar 

  118. D.R. Hartree, The wave mechanics of an atom with a non-coulomb central field. Part II. Some results and discussion. Math. Proc. Camb. Philos. Soc. 24, 111 (1928). doi:10.1017/S0305004100011920

    Article  ADS  MATH  Google Scholar 

  119. V. Fock, Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeitschrift für Physik 61, 126 (1930). doi:10.1007/BF01340294

    Article  ADS  MATH  Google Scholar 

  120. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964). doi:10.1103/PhysRev.136.B864

    Article  ADS  MathSciNet  Google Scholar 

  121. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965). doi:10.1103/PhysRev.140.A1133

    Article  ADS  MathSciNet  Google Scholar 

  122. R.D. Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem (Courier Dover Publications, New York, 1976)

    Google Scholar 

  123. N. Laflorencie, D. Poilblanc, Simulations of pure and doped low-dimensional spin-1/2 gapped systems, in Quantum Magnetism, ed. by U. Schollwöck, J. Richter, D.J.J. Farnell, R.F. Bishop (Springer, Berlin, 2004), pp. 227–252. doi:10.1007/BFb0119595

  124. A.M. Läuchli, Numerical simulations of frustrated systems, in Introduction to Frustrated Magnetism, ed. by C. Lacroix, P. Mendels, F. Mila (Springer, Berlin, 2011), pp. 481–511. doi:10.1007/978-3-642-10589-0

  125. C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. 45, 255 (1950)

    Article  MathSciNet  Google Scholar 

  126. A.M. Läuchli, An exact diagonalization perspective on the S \(=\) 1/2 Kagome Heisenberg antiferromagnet, in KITP Program: Frustrated Magnetism and Quantum Spin Liquids: From Theory and Models to Experiments, 13 August–9 November 2012 (2012), http://online.kitp.ucsb.edu/online/fragnets12/laeuchli/

  127. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953). doi:10.1063/1.1699114

    Article  ADS  Google Scholar 

  128. A.W. Sandvik, J. Kurkijärvi, Quantum Monte Carlo simulation method for spin systems. Phys. Rev. B 43, 5950 (1991). doi:10.1103/PhysRevB.43.5950

    Article  ADS  Google Scholar 

  129. M. Troyer, U.-J. Wiese, Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett. 94, 170201 (2005). doi:10.1103/PhysRevLett.94.170201

    Article  ADS  Google Scholar 

  130. M.P. Gelfand, R.R.P. Singh, High-order convergent expansions for quantum many particle systems. Adv. Phys. 49, 93 (2000). doi:10.1080/000187300243390

    Article  ADS  Google Scholar 

  131. F. Wegner, Flow-equations for Hamiltonians. Annalen der Physik 506, 77 (1994). doi:10.1002/andp.19945060203

    Article  ADS  MATH  Google Scholar 

  132. C. Knetter, A. Bühler, E. Müller-Hartmann, G.S. Uhrig, Dispersion and symmetry of bound states in the Shastry–Sutherland model. Phys. Rev. Lett. 85, 3958 (2000). doi:10.1103/PhysRevLett.85.3958

    Article  ADS  Google Scholar 

  133. S. Kehrein, The Flow Equation Approach to Many-Particle Systems (Springer, Berlin, 2006)

    MATH  Google Scholar 

  134. J.C. Slater, The theory of complex spectra. Phys. Rev. 34, 1293 (1929). doi:10.1103/PhysRev.34.1293

    Article  ADS  MATH  Google Scholar 

  135. J.C. Slater, Note on Hartree’s method. Phys. Rev. 35, 210 (1930). doi:10.1103/PhysRev.35.210.2

    Article  ADS  Google Scholar 

  136. E.P. Gross, Structure of a quantized vortex in boson systems. Il Nuovo Cimento 20, 454 (1961). doi:10.1007/BF02731494

    Article  ADS  MathSciNet  MATH  Google Scholar 

  137. L.P. Pitaevskii, Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 40 (1961)

    Google Scholar 

  138. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Microscopic theory of superconductivity. Phys. Rev. 106, 162 (1957). doi:10.1103/PhysRev.106.162

    Article  ADS  MathSciNet  MATH  Google Scholar 

  139. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108, 1175 (1957). doi:10.1103/PhysRev.108.1175

    Article  ADS  MathSciNet  MATH  Google Scholar 

  140. S. Sorella, Wave function optimization in the variational Monte Carlo method. Phys. Rev. B 71, 241103 (2005). doi:10.1103/PhysRevB.71.241103

    Article  ADS  Google Scholar 

  141. F. Becca, L. Capriotti, A. Parola, S. Sorella, Variational wave functions for frustrated magnetic models, in Introduction to Frustrated Magnetism, ed. by C. Lacroix, P. Mendels, F. Mila (Springer, Berlin, 2011), pp. 379–406. doi:10.1007/978-3-642-10589-0

  142. Y. Iqbal, D. Poilblanc, F. Becca, Spin-1/2 Heisenberg \(J_1\)-\(J_2\) antiferromagnet on the kagome lattice. Phys. Rev. B 91, 020402 (2015). doi:10.1103/PhysRevB.91.020402

    Article  ADS  Google Scholar 

  143. V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  144. M. Gaudin, The Bethe Wavefunction (Cambridge University Press, Cambridge, 2014)

    Book  MATH  Google Scholar 

  145. B. Sutherland, Beautiful Models: 70 Years of Exactly Solved Quantum Many-body Problems (World Scientific, Singapore, 2004)

    Book  MATH  Google Scholar 

  146. C.N. Yang, C.P. Yang, One-dimensional chain of anisotropic spin-spin interactions. I. Proof of Bethe’s hypothesis for ground state in a finite system. Phys. Rev. 150, 321 (1966). doi:10.1103/PhysRev.150.321

    Article  ADS  Google Scholar 

  147. C.N. Yang, C.P. Yang, One-dimensional chain of anisotropic spin-spin interactions. II. Properties of the ground-state energy per lattice site for an infinite system. Phys. Rev. 150, 327 (1966). doi:10.1103/PhysRev.150.327

    Article  ADS  Google Scholar 

  148. C.N. Yang, C.P. Yang, One-dimensional chain of anisotropic spin-spin interactions III. Applications. Phys. Rev. 151, 258 (1966). doi:10.1103/PhysRev.151.258

    Article  ADS  Google Scholar 

  149. R.J. Baxter, One-dimensional anisotropic Heisenberg chain. Ann. Phys. 70, 323 (1972). doi:10.1016/0003-4916(72)90270-9

    Article  ADS  MathSciNet  Google Scholar 

  150. E.H. Lieb, F. Wu, Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett. 20, 1445 (1968). doi:10.1103/PhysRevLett.20.1445

    Article  ADS  Google Scholar 

  151. E.H. Lieb, W. Liniger, Exact analysis of an interacting bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605 (1963). doi:10.1103/PhysRev.130.1605

    Article  ADS  MathSciNet  MATH  Google Scholar 

  152. E.H. Lieb, Exact analysis of an interacting bose gas II. The excitation spectrum. Phys. Rev. 130, 1616 (1963). doi:10.1103/PhysRev.130.1616

    Article  ADS  MathSciNet  MATH  Google Scholar 

  153. C.N. Yang, C.P. Yang, Thermodynamics of a one-dimensional system of Bosons with repulsive delta-function interaction. J. Math. Phys. 10, 1115 (1969). doi:10.1063/1.1664947

    Article  ADS  MathSciNet  MATH  Google Scholar 

  154. M. Takahashi, Thermodynamics of One-Dimensional Solvable Models (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  155. F.H.L. Essler, R.M. Konik, Application of massive integrable quantum field theories to problems in condensed matter physics, From Fields to Strings: Circumnavigating Theoretical Physics (World Scientific, Singapore, 2005), pp. 684–830. doi:10.1142/9789812775344_0020

  156. A.B. Zamolodchikov, Exact two-particle S-matrix of quantum sine-Gordon solitons. Commun. Math. Phys. 55, 183 (1977). doi:10.1007/BF01626520

    Article  ADS  MathSciNet  Google Scholar 

  157. G. Mussardo, Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics (Oxford University Press, Oxford, 2009)

    MATH  Google Scholar 

  158. C.N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312 (1967). doi:10.1103/PhysRevLett.19.1312

    Article  ADS  MathSciNet  MATH  Google Scholar 

  159. N.A. Slavnov, Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz. Theor. Math. Phys. 79, 502 (1989). doi:10.1007/BF01016531

    Article  MathSciNet  Google Scholar 

  160. N.A. Slavnov, Nonequal-time current correlation function in a one-dimensional Bose gas. Theor. Math. Phys. 82, 273 (1990). doi:10.1007/BF01029221

    Article  Google Scholar 

  161. N. Kitanine, J. Maillet, V. Terras, Form factors of the XXZ Heisenberg finite chain. Nucl. Phys. B 554, 647 (1999). doi:10.1016/S0550-3213(99)00295-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  162. N. Kitanine, J. Maillet, V. Terras, Correlation functions of the XXZ Heisenberg spin chain in a magnetic field. Nucl. Phys. B 567, 554 (2000). doi:10.1016/S0550-3213(99)00619-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  163. R.M. Konik, Haldane-gapped spin chains: exact low-temperature expansions of correlation functions. Phys. Rev. B 68, 104435 (2003). doi:10.1103/PhysRevB.68.104435

    Article  ADS  Google Scholar 

  164. F.H.L. Essler, R.M. Konik, Finite-temperature lineshapes in gapped quantum spin chains. Phys. Rev. B 78, 100403 (2008). doi:10.1103/PhysRevB.78.100403

    Article  ADS  Google Scholar 

  165. A. James, F.H.L. Essler, R.M. Konik, Finite-temperature dynamical structure factor of alternating Heisenberg chains. Phys. Rev. B 78, 094411 (2008). doi:10.1103/PhysRevB.78.094411

    Article  ADS  Google Scholar 

  166. F.H.L. Essler, R.M. Konik, Finite-temperature dynamical correlations in massive integrable quantum field theories. J. Stat. Mech. Theory Exp. 2009, P09018 (2009). doi:10.1088/1742-5468/2009/09/P09018

    MathSciNet  Google Scholar 

  167. W.D. Goetze, U. Karahasanovic, F.H.L. Essler, Low-temperature dynamical structure factor of the two-leg spin-1/2 Heisenberg ladder. Phys. Rev. B 82, 104417 (2010). doi:10.1103/PhysRevB.82.104417

    Article  ADS  Google Scholar 

  168. D.A. Tennant, B. Lake, A.J.A. James, F.H.L. Essler, S. Notbohm, H.-J. Mikeska, J. Fielden, P. Kögerler, P.C. Canfield, M.T.F. Telling, Anomalous dynamical line shapes in a quantum magnet at finite temperature. Phys. Rev. B 85, 014402 (2012). doi:10.1103/PhysRevB.85.014402

    Article  ADS  Google Scholar 

  169. M. Rigol, V. Dunjko, V. Yurovsky, M. Olshanii, Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core Bosons. Phys. Rev. Lett. 98, 4 (2007). doi:10.1103/PhysRevLett.98.050405

    Google Scholar 

  170. M. Fagotti, F.H.L. Essler, Stationary behaviour of observables after a quantum quench in the spin-1/2 Heisenberg XXZ chain. J. Stat. Mech. Theory Exp. 2013, P07012 (2013). doi:10.1088/1742-5468/2013/07/P07012

    Article  MathSciNet  Google Scholar 

  171. M. Fagotti, M. Collura, F.H.L. Essler, P. Calabrese, Relaxation after quantum quenches in the spin-1/2 Heisenberg XXZ chain. Phys. Rev. B 89, 125101 (2014). doi:10.1103/PhysRevB.89.125101

    Article  ADS  Google Scholar 

  172. E. Ilievski, M. Medenjak, T. Prosen, Quasilocal conserved operators in isotropic Heisenberg spin 1/2 chain (2015), arXiv:1506.05049

  173. E. Ilievski, J. De Nardis, B. Wouters, J.-S. Caux, F.H.L. Essler, T. Prosen, Complete generalized Gibbs ensembles in an interacting theory. Phys. Rev. Lett. 115, 157201 (2015). doi:10.1103/PhysRevLett.115.157201

    Article  ADS  Google Scholar 

  174. E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106, 171 (1957). doi:10.1103/PhysRev.106.620

    Article  ADS  MathSciNet  MATH  Google Scholar 

  175. E.T. Jaynes, Information theory and statistical mechanics II. Phys. Rev. 108, 171 (1957). doi:10.1103/PhysRev.108.171

    Article  ADS  MathSciNet  MATH  Google Scholar 

  176. D. Fioretto, G. Mussardo, Quantum quenches in integrable field theories. New J. Phys. 12, 055015 (2010). doi:10.1088/1367-2630/12/5/055015

    Article  ADS  MathSciNet  Google Scholar 

  177. M. Fagotti, F.H.L. Essler, Reduced density matrix after a quantum quench. Phys. Rev. B 87, 245107 (2013). doi:10.1103/PhysRevB.87.245107

    Article  ADS  Google Scholar 

  178. F.H.L. Essler, G. Mussardo, M. Panfil, Generalized Gibbs ensembles for quantum field theories. Phys. Rev. A 91, 051602 (2015). doi:10.1103/PhysRevA.91.051602

    Article  ADS  Google Scholar 

  179. F.H.L. Essler, S. Kehrein, S.R. Manmana, N.J. Robinson, Quench dynamics in a model with tuneable integrability breaking. Phys. Rev. B 89, 165104 (2014). doi:10.1103/PhysRevB.89.165104

    Article  ADS  Google Scholar 

  180. S. Sotiriadis, Zamolodchikov–Faddeev algebra and quantum quenches in integrable field theories. J. Stat. Mech. Theory Exp. 2012, P02017 (2012), http://iopscience.iop.org/1742-5468/2012/02/P02017

  181. J.-S. Caux, R.M. Konik, Constructing the generalized Gibbs ensemble after a quantum quench. Phys. Rev. Lett. 109, 175301 (2012). doi:10.1103/PhysRevLett.109.175301

    Article  ADS  Google Scholar 

  182. J. Mossel, J.-S. Caux, Generalized TBA and generalized Gibbs. J. Phys. A Math. Theor. 45, 255001 (2012). doi:10.1088/1751-8113/45/25/255001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  183. E. Demler, A.M. Tsvelik, Universal features of the excitation spectrum in a generalized Gibbs distribution ensemble. Phys. Rev. B 86, 115448 (2012). doi:10.1103/PhysRevB.86.115448

    Article  ADS  Google Scholar 

  184. L. Bonnes, F.H.L. Essler, A.M. Läuchli, Light-cone dynamics after quantum quenches in spin chains. Phys. Rev. Lett. 113, 187203 (2014). doi:10.1103/PhysRevLett.113.187203

    Article  ADS  Google Scholar 

  185. M. Kollar, F.A. Wolf, M. Eckstein, Generalized Gibbs ensemble prediction of prethermalization plateaus and their relation to nonthermal steady states in integrable systems. Phys. Rev. B 84, 054304 (2011). doi:10.1103/PhysRevB.84.054304

    Article  ADS  Google Scholar 

  186. M. Fagotti, On conservation laws, relaxation and pre-relaxation after a quantum quench. J. Stat. Mech. Theory Exp. 2014, P03016 (2014). doi:10.1088/1742-5468/2014/03/P03016

    Article  MathSciNet  Google Scholar 

  187. B. Bertini, F.H.L. Essler, S. Groha, N.J. Robinson, Prethermalization and thermalization in models with weak integrability breaking. Phys. Rev. Lett. 115, 180601 (2015). doi:10.1103/PhysRevLett.115.180601

    Article  ADS  Google Scholar 

  188. T. Langen, T. Gasenzer, J. Schmiedmayer, Prethermalization and universal dynamics in near-integrable quantum systems. J. Stat. Mech. Theory Exp. 2016, 064009 (2016), http://stacks.iop.org/1742-5468/2016/i=6/a=064009

  189. F. Verstraete, V. Murg, J.I. Cirac, Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57, 143 (2008). doi:10.1080/14789940801912366

    Article  ADS  Google Scholar 

  190. N. Schuch, Condensed Matter Applications of Entanglement Theory (2013), arXiv:1306.5551

  191. R. Orús, A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann. Phys. 349, 117 (2014). doi:10.1016/j.aop.2014.06.013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  192. K.G. Wilson, The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773 (1975). doi:10.1103/RevModPhys.47.773

    Article  ADS  MathSciNet  Google Scholar 

  193. J. Kondo, Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37 (1964). doi:10.1143/PTP.32.37

    Article  ADS  Google Scholar 

  194. P.W. Anderson, Localized magnetic states in metals. Phys. Rev. 124, 41 (1961). doi:10.1103/PhysRev.124.41

    Article  ADS  MathSciNet  Google Scholar 

  195. A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  196. R. Bulla, T. Costi, T. Pruschke, Numerical renormalization group method for quantum impurity systems. Rev. Mod. Phys. 80, 395 (2008). doi:10.1103/RevModPhys.80.395

    Article  ADS  Google Scholar 

  197. S.R. White, R.M. Noack, Real-space quantum renormalization groups. Phys. Rev. Lett. 68, 3487 (1992). doi:10.1103/PhysRevLett.68.3487

    Article  ADS  Google Scholar 

  198. S.R. White, Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992). doi:10.1103/PhysRevLett.69.2863

    Article  ADS  Google Scholar 

  199. S.R. White, Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345 (1993). doi:10.1103/PhysRevB.48.10345

    Article  ADS  Google Scholar 

  200. J.I. Latorre, E. Rico, G. Vidal, Ground state entanglement in quantum spin chains. Quantum Inf. Comput. 4, 48 (2004), arXiv:0304098

  201. U. Schollwöck, The density-matrix renormalization group. Rev. Mod. Phys. 77, 259 (2005). doi:10.1103/RevModPhys.77.259

    Article  ADS  MathSciNet  MATH  Google Scholar 

  202. U. Schollwöck, The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96 (2011). doi:10.1016/j.aop.2010.09.012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  203. S.R. White, D. Huse, Numerical renormalization-group study of low-lying eigenstates of the antiferromagnetic S \(=\) 1 Heisenberg chain. Phys. Rev. B 48, 3844 (1993). doi:10.1103/PhysRevB.48.3844

    Article  ADS  Google Scholar 

  204. I. Peschel, X. Wang, M. Kaulke, K. Hallberg, Density-Matrix Renormalization - A New Numerical Method in Physics (Springer, Berlin, 1999). doi:10.1007/BFb0106062

  205. K. Hallberg, Density Matrix Renormalization: A Review of the Method and its Applications (2003), arXiv:0303557

  206. S. Östlund, S. Rommer, Thermodynamic limit of the density matrix renormalization for the spin-1 Heisenberg chain. Phys. Rev. Lett. 75, 13 (1995). doi:10.1103/PhysRevLett.75.3537

    Article  Google Scholar 

  207. S. Rommer, S. Östlund, Class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group. Phys. Rev. B 55, 2164 (1997). doi:10.1103/PhysRevB.55.2164

    Article  ADS  Google Scholar 

  208. J. Dukelsky, M.A. Martín-Delgado, T. Nishino, G. Sierra, Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains. Europhys. Lett. 43, 457 (1998). doi:10.1209/epl/i1998-00381-x

    Article  ADS  Google Scholar 

  209. I.P. McCulloch, From density-matrix renormalization group to matrix product states. J. Stat. Mech. Theory Exp. 2007, P10014 (2007). doi:10.1088/1742-5468/2007/10/P10014

    Article  Google Scholar 

  210. C.K. Majumdar, D.K. Ghosh, On next-nearest-neighbor interaction in linear chain I. J. Math. Phys. 10, 1388 (1969). doi:10.1063/1.1664978

    Article  ADS  MathSciNet  Google Scholar 

  211. C.K. Majumdar, D.K. Ghosh, On Next-Nearest-Neighbor Interaction in Linear Chain II. J. Math. Phys. 10, 1388 (1969). doi:10.1063/1.1664978

    Article  ADS  MathSciNet  Google Scholar 

  212. C.K. Majumdar, Antiferromagnetic model with known ground state. J. Phys. C Solid State Phys. 3, 911 (1970). doi:10.1088/0022-3719/3/4/019

    Article  ADS  Google Scholar 

  213. M. Fannes, B. Nachtergaele, R.F. Werner, Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443 (1992). doi:10.1007/BF02099178

    Article  ADS  MathSciNet  MATH  Google Scholar 

  214. G. Vidal, Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 4 (2003). doi:10.1103/PhysRevLett.91.147902

    Article  Google Scholar 

  215. G. Vidal, Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 93, 4 (2004). doi:10.1103/PhysRevLett.93.040502

    Article  Google Scholar 

  216. F. Verstraete, J.I. Cirac, Valence-bond states for quantum computation. Phys. Rev. A 70, 060302 (2004). doi:10.1103/PhysRevA.70.060302

    Article  ADS  Google Scholar 

  217. F. Verstraete, D. Porras, J.I. Cirac, Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. Phys. Rev. Lett. 93, 227205 (2004). doi:10.1103/PhysRevLett.93.227205

    Article  ADS  Google Scholar 

  218. C. Schön, E. Solano, F. Verstraete, J.I. Cirac, M.M. Wolf, Sequential generation of entangled multiqubit states. Phys. Rev. Lett. 95, 4 (2005). doi:10.1103/PhysRevLett.95.110503

    Article  Google Scholar 

  219. C. Schön, K. Hammerer, M.M. Wolf, J.I. Cirac, E. Solano, Sequential generation of matrix-product states in cavity QED. Phys. Rev. A 75, 11 (2007). doi:10.1103/PhysRevA.75.032311

    Article  Google Scholar 

  220. T.J. Osborne, J. Eisert, F. Verstraete, Holographic quantum states. Phys. Rev. Lett. 105, 6 (2010). doi:10.1103/PhysRevLett.105.260401

    Article  MathSciNet  Google Scholar 

  221. D. Pérez-García, F. Verstraete, M.M. Wolf, J.I. Cirac, Matrix product state representations. Quantum Inf. Comput. 7, 401 (2007), arXiv:0608197

  222. D.E. Evans, R. Hoegh-Krohn, Spectral properties of positive maps on C\(^*\)-algebras. J. Lond. Math. Soc. s2-17, 345 (1978). doi:10.1112/jlms/s2-17.2.345

  223. J.I. Cirac, D. Perez-Garcia, N. Schuch, F. Verstraete, Matrix Product Density Operators: Renormalization Fixed Points and Boundary Theories (2016), arXiv:1606.00608

  224. N. Schuch, M.M. Wolf, F. Verstraete, J.I. Cirac, Entropy scaling and simulability by matrix product states. Phys. Rev. Lett. 100, 4 (2008). doi:10.1103/PhysRevLett.100.030504

    MathSciNet  MATH  Google Scholar 

  225. F. Pollmann, S. Mukerjee, A.M. Turner, J.E. Moore, Theory of finite-entanglement scaling at one-dimensional quantum critical points. Phys. Rev. Lett. 102, 255701 (2009). doi:10.1103/PhysRevLett.102.255701

    Article  ADS  Google Scholar 

  226. D. Pérez-García, M. Wolf, M. Sanz, F. Verstraete, J.I. Cirac, String order and symmetries in quantum spin lattices. Phys. Rev. Lett. 100, 167202 (2008). doi:10.1103/PhysRevLett.100.167202

    Article  ADS  Google Scholar 

  227. N. Schuch, D. Pérez-García, I. Cirac, Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B 84, 165139 (2011). doi:10.1103/PhysRevB.84.165139

    Article  ADS  Google Scholar 

  228. X. Chen, Z.-C. Gu, X.-G. Wen, Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83, 035107 (2011). doi:10.1103/PhysRevB.83.035107

    Article  ADS  Google Scholar 

  229. F. Pollmann, E. Berg, A.M. Turner, M. Oshikawa, Symmetry protection of topological phases in one-dimensional quantum spin systems. Phys. Rev. B 85, 075125 (2012). doi:10.1103/PhysRevB.85.075125

    Article  ADS  Google Scholar 

  230. G. Vidal, Classical simulation of infinite-size quantum lattice systems in one spatial dimension. Phys. Rev. Lett. 98, 5 (2007). doi:10.1103/PhysRevLett.98.070201

    Article  Google Scholar 

  231. R. Orús, G. Vidal, Infinite time-evolving block decimation algorithm beyond unitary evolution. Phys. Rev. B 78, 155117 (2008). doi:10.1103/PhysRevB.78.155117

    Article  ADS  Google Scholar 

  232. J. Haegeman, J.I. Cirac, T.J. Osborne, I. Pizorn, H. Verschelde, F. Verstraete, Time-dependent variational principle for quantum lattices. Phys. Rev. Lett. 107, 070601 (2011). doi:10.1103/PhysRevLett.107.070601

    Article  ADS  Google Scholar 

  233. S.R. White, Density matrix renormalization group algorithms with a single center site. Phys. Rev. B 72, 180403 (2005). doi:10.1103/PhysRevB.72.180403

    Article  ADS  Google Scholar 

  234. I.P. McCulloch, Infinite size density matrix renormalization group, revisited (2008), arXiv:0804.2509

  235. J.A. Kjäll, M.P. Zaletel, R.S.K. Mong, J.H. Bardarson, F. Pollmann, Phase diagram of the anisotropic spin-2 XXZ model: infinite-system density matrix renormalization group study. Phys. Rev. B 87, 235106 (2013). doi:10.1103/PhysRevB.87.235106

    Article  ADS  Google Scholar 

  236. J. Haegeman, T.J. Osborne, F. Verstraete, Post-matrix product state methods: to tangent space and beyond. Phys. Rev. B 88, 075133 (2013). doi:10.1103/PhysRevB.88.075133

    Article  ADS  Google Scholar 

  237. A. Milsted, J. Haegeman, T.J. Osborne, Matrix product states and variational methods applied to critical quantum field theory. Phys. Rev. D 88, 085030 (2013). doi:10.1103/PhysRevD.88.085030

    Article  ADS  Google Scholar 

  238. J. Haegeman, M. Mariën, T.J. Osborne, F. Verstraete, Geometry of matrix product states: metric, parallel transport, and curvature. J. Math. Phys. 55, 021902 (2014). doi:10.1063/1.4862851

    Article  ADS  MathSciNet  MATH  Google Scholar 

  239. P. Pippan, S.R. White, H.G. Evertz, Efficient matrix-product state method for periodic boundary conditions. Phys. Rev. B 81, 81103 (2010). doi:10.1103/PhysRevB.81.081103

    Article  ADS  Google Scholar 

  240. B. Pirvu, F. Verstraete, G. Vidal, Exploiting translational invariance in matrix product state simulations of spin chains with periodic boundary conditions. Phys. Rev. B 83, 125104 (2011). doi:10.1103/PhysRevB.83.125104

    Article  ADS  Google Scholar 

  241. D. Porras, F. Verstraete, J.I. Cirac, Renormalization algorithm for the calculation of spectra of interacting quantum systems. Phys. Rev. B 73 (2006). doi:10.1103/PhysRevB.73.014410

  242. B. Pirvu, V. Murg, J.I. Cirac, F. Verstraete, Matrix product operator representations. New J. Phys. 12, 025012 (2010). doi:10.1088/1367-2630/12/2/025012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  243. A.J. Daley, C. Kollath, U. Schollwöck, G. Vidal, Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces. J. Stat. Mech. Theory Exp. 2004, P04005 (2004). doi:10.1088/1742-5468/2004/04/P04005

    Article  MATH  Google Scholar 

  244. S.R. White, A.E. Feiguin, Real-time evolution using the density matrix renormalization group. Phys. Rev. Lett. 93, 076401 (2004). doi:10.1103/PhysRevLett.93.076401

    Article  ADS  Google Scholar 

  245. F. Verstraete, J.J. García-Ripoll, J.I. Cirac, Matrix product density operators: simulation of finite-temperature and dissipative systems. Phys. Rev. Lett. 93, 207204 (2004). doi:10.1103/PhysRevLett.93.207204

    Article  ADS  Google Scholar 

  246. J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, F. Verstraete, Unifying time evolution and optimization with matrix product states (2014), arXiv:1408.5056

  247. V. Zauner, M. Ganahl, H.G. Evertz, T. Nishino, Time evolution within a comoving window: scaling of signal fronts and magnetization plateaus after a local quench in quantum spin chains. J. Phys. Condens. Matter 27, 425602 (2012). doi:10.1088/0953-8984/27/42/425602

    Article  Google Scholar 

  248. H.N. Phien, G. Vidal, I.P. McCulloch, Infinite boundary conditions for matrix product state calculations. Phys. Rev. B 86, 245107 (2012). doi:10.1103/PhysRevB.86.245107

    Article  ADS  Google Scholar 

  249. A. Milsted, J. Haegeman, T.J. Osborne, F. Verstraete, Variational matrix product ansatz for nonuniform dynamics in the thermodynamic limit. Phys. Rev. B 88, 155116 (2013). doi:10.1103/PhysRevB.88.155116

    Article  ADS  Google Scholar 

  250. K. Hallberg, Density-matrix algorithm for the calculation of dynamical properties of low-dimensional systems. Phys. Rev. B 52, R9827 (1995). doi:10.1103/PhysRevB.52.R9827

    Article  ADS  Google Scholar 

  251. P.E. Dargel, A. Honecker, R. Peters, R.M. Noack, T. Pruschke, Adaptive Lanczos-vector method for dynamic properties within the density matrix renormalization group. Phys. Rev. B 83, 161104 (2011). doi:10.1103/PhysRevB.83.161104

    Article  ADS  Google Scholar 

  252. P.E. Dargel, A. Wöllert, A. Honecker, I.P. McCulloch, U. Schollwöck, T. Pruschke, Lanczos algorithm with matrix product states for dynamical correlation functions. Phys. Rev. B 85, 205119 (2012). doi:10.1103/PhysRevB.85.205119

    Article  ADS  Google Scholar 

  253. S. Ramasesha, S.K. Pati, H.R. Krishnamurthy, Z. Shuai, J.L. Brédas, Symmetrized density-matrix renormalization-group method for excited states of Hubbard models. Phys. Rev. B 54, 7598 (1996). doi:10.1103/PhysRevB.54.7598

    Article  ADS  Google Scholar 

  254. T. Kühner, S. White, Dynamical correlation functions using the density matrix renormalization group. Phys. Rev. B 60, 335 (1999). doi:10.1103/PhysRevB.60.335

    Article  ADS  Google Scholar 

  255. E. Jeckelmann, Dynamical density-matrix renormalization-group method. Phys. Rev. B 66, 045114 (2002). doi:10.1103/PhysRevB.66.045114

    Article  ADS  Google Scholar 

  256. A. Weichselbaum, F. Verstraete, U. Schollwöck, J.I. Cirac, J. von Delft, Variational matrix-product-state approach to quantum impurity models. Phys. Rev. B 80, 165117 (2009). doi:10.1103/PhysRevB.80.165117

    Article  ADS  Google Scholar 

  257. S.R. White, I. Affleck, Spectral function for the S \(=\) 1 Heisenberg antiferromagetic chain. Phys. Rev. B 77, 134437 (2008). doi:10.1103/PhysRevB.77.134437

    Article  ADS  Google Scholar 

  258. R. Pereira, S. White, I. Affleck, Exact edge singularities and dynamical correlations in spin-1/2 chains. Phys. Rev. Lett. 100, 4 (2008). doi:10.1103/PhysRevLett.100.027206

    Article  Google Scholar 

  259. T. Barthel, U. Schollwöck, S. White, Spectral functions in one-dimensional quantum systems at finite temperature using the density matrix renormalization group. Phys. Rev. B 79, 245101 (2009). doi:10.1103/PhysRevB.79.245101

    Article  ADS  Google Scholar 

  260. J. Kjäll, F. Pollmann, J. Moore, Bound states and E_\({\{8\}}\) symmetry effects in perturbed quantum Ising chains. Phys. Rev. B 83, 020407 (2011). doi:10.1103/PhysRevB.83.020407

  261. L. Seabra, F. Pollmann, Exotic Ising dynamics in a Bose-Hubbard model. Phys. Rev. B 88, 5 (2013). doi:10.1103/PhysRevB.88.125103

    Article  Google Scholar 

  262. A. Holzner, A. Weichselbaum, I.P. McCulloch, U. Schollwöck, J. von Delft, Chebyshev matrix product state approach for spectral functions. Phys. Rev. B 83, 195115 (2011). doi:10.1103/PhysRevB.83.195115

    Article  ADS  Google Scholar 

  263. A. Feiguin, S. White, Finite-temperature density matrix renormalization using an enlarged Hilbert space. Phys. Rev. B 72, 220401 (2005). doi:10.1103/PhysRevB.72.220401

    Article  ADS  Google Scholar 

  264. S. White, Minimally entangled typical quantum states at finite temperature. Phys. Rev. Lett. 102, 190601 (2009). doi:10.1103/PhysRevLett.102.190601

    Article  ADS  MathSciNet  Google Scholar 

  265. C. Karrasch, J.H. Bardarson, J.E. Moore, Finite-temperature dynamical density matrix renormalization group and the drude weight of spin-1/2 chains. Phys. Rev. Lett. 108, 227206 (2012). doi:10.1103/PhysRevLett.108.227206

    Article  ADS  Google Scholar 

  266. S.R. White, Spin gaps in a frustrated Heisenberg model for CaV\(_4\)O\(_9\). Phys. Rev. Lett. 77, 3633 (1996). doi:10.1103/PhysRevLett.77.3633

    Article  ADS  Google Scholar 

  267. E. Stoudenmire, S.R. White, Studying two-dimensional systems with the density matrix renormalization group. Annu. Rev. Condens. Matter Phys. 3, 111 (2012). doi:10.1146/annurev-conmatphys-020911-125018

    Article  Google Scholar 

  268. F. Verstraete, J.I. Cirac, Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions (2004), arXiv:0407066

  269. D. Perez-Garcia, F. Verstraete, J.I. Cirac, M.M. Wolf, PEPS as unique ground states of local Hamiltonians. Quantum Inf. Comput. 8, 0650 (2007), http://www.rintonpress.com/journals/qiconline.html

  270. F. Verstraete, M.M. Wolf, D. Perez-Garcia, J.I. Cirac, Criticality, the area law, and the computational power of projected entangled pair states. Phys. Rev. Lett. 96, 220601 (2006). doi:10.1103/PhysRevLett.96.220601

    Article  ADS  MathSciNet  MATH  Google Scholar 

  271. N. Schuch, D. Poilblanc, J.I. Cirac, D. Pérez-García, Resonating valence bond states in the PEPS formalism. Phys. Rev. B 86, 115108 (2012). doi:10.1103/PhysRevB.86.115108

    Article  ADS  Google Scholar 

  272. Z.-C. Gu, M. Levin, B. Swingle, X.-G. Wen, Tensor-product representations for string-net condensed states. Phys. Rev. B 79, 085118 (2009). doi:10.1103/PhysRevB.79.085118

    Article  ADS  Google Scholar 

  273. O. Buerschaper, M. Aguado, G. Vidal, Explicit tensor network representation for the ground states of string-net models. Phys. Rev. B 79, 085119 (2009). doi:10.1103/PhysRevB.79.085119

    Article  ADS  Google Scholar 

  274. N. Schuch, M. Wolf, F. Verstraete, J.I. Cirac, Computational complexity of projected entangled pair states. Phys. Rev. Lett. 98, 140506 (2007). doi:10.1103/PhysRevLett.98.140506

    Article  ADS  MathSciNet  MATH  Google Scholar 

  275. J.I. Cirac, D. Poilblanc, N. Schuch, F. Verstraete, Entanglement spectrum and boundary theories with projected entangled-pair states. Phys. Rev. B 83, 245134 (2011). doi:10.1103/PhysRevB.83.245134

    Article  ADS  Google Scholar 

  276. N. Schuch, D. Poilblanc, J.I. Cirac, D. Pérez-García, Topological order in the projected entangled-pair states formalism: transfer operator and boundary Hamiltonians. Phys. Rev. Lett. 111, 090501 (2013). doi:10.1103/PhysRevLett.111.090501

    Article  ADS  Google Scholar 

  277. S. Yang, L. Lehman, D. Poilblanc, K. Van Acoleyen, F. Verstraete, J.I. Cirac, N. Schuch, Edge theories in projected entangled pair state models. Phys. Rev. Lett. 112, 036402 (2014). doi:10.1103/PhysRevLett.112.036402

    Article  ADS  Google Scholar 

  278. N. Schuch, J.I. Cirac, D. Pérez-García, PEPS as ground states: degeneracy and topology. Ann. Phys. 325, 2153 (2010). doi:10.1016/j.aop.2010.05.008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  279. O. Buerschaper, Twisted injectivity in projected entangled pair states and the classification of quantum phases. Ann. Phys. 351, 447 (2014). doi:10.1016/j.aop.2014.09.007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  280. M.B. Şahinoǧlu, D. Williamson, N. Bultinck, M. Mariën, J. Haegeman, N. Schuch, F. Verstraete, Characterizing Topological Order with Matrix Product Operators (2014), arXiv:1409.2150

  281. N. Bultinck, M. Mariën, D.J. Williamson, M.B. Şahinoǧlu, J. Haegeman, F. Verstraete, Anyons and matrix product operator algebras (2015), arXiv:1511.08090

  282. J. Haegeman, V. Zauner, N. Schuch, F. Verstraete, Shadows of anyons and the entanglement structure of topological phases. Nat. Commun. 6, 8284 (2015). doi:10.1038/ncomms9284

    Article  ADS  Google Scholar 

  283. M. Mariën, J. Haegeman, P. Fendley, F. Verstraete, Condensation-Driven Phase Transitions in Perturbed String Nets (2016), arXiv:1607.05296

  284. G. Vidal, Entanglement renormalization. Phys. Rev. Lett. 99, 220405 (2007). doi:10.1103/PhysRevLett.99.220405

    Article  ADS  Google Scholar 

  285. F. Verstraete, J.I. Cirac, J. Latorre, E. Rico, M. Wolf, Renormalization-group transformations on quantum states. Phys. Rev. Lett. 94, 5 (2005). doi:10.1103/PhysRevLett.94.140601

    Article  Google Scholar 

  286. G. Evenbly, G. Vidal, Algorithms for entanglement renormalization: boundaries, impurities and interfaces. J. Stat. Phys. 157, 931 (2014). doi:10.1007/s10955-014-0983-1

    Article  MathSciNet  MATH  Google Scholar 

  287. V. Zauner, D. Draxler, L. Vanderstraeten, M. Degroote, J. Haegeman, M.M. Rams, V. Stojevic, N. Schuch, F. Verstraete, Transfer matrices and excitations with matrix product states. New J. Phys. 17, 053002 (2015). doi:10.1088/1367-2630/17/5/053002

    Article  ADS  MathSciNet  Google Scholar 

  288. M. Bal, M.M. Rams, V. Zauner, J. Haegeman, F. Verstraete, Matrix product state renormalization (2015), arXiv:1509.01522

  289. F. Verstraete, J.I. Cirac, Continuous matrix product states for quantum fields. Phys. Rev. Lett. 104 (2010). doi:10.1103/PhysRevLett.104.190405

  290. J. Haegeman, J.I. Cirac, T.J. Osborne, H. Verschelde, F. Verstraete, Applying the variational principle to (1 \(+\) 1)-dimensional quantum field theories. Phys. Rev. Lett. 105, 251601 (2010). doi:10.1103/PhysRevLett.105.251601

    Article  ADS  MathSciNet  Google Scholar 

  291. J. Haegeman, J.I. Cirac, T.J. Osborne, F. Verstraete, Calculus of continuous matrix product states. Phys. Rev. B 88, 085118 (2013). doi:10.1103/PhysRevB.88.085118

    Article  ADS  Google Scholar 

  292. D. Draxler, J. Haegeman, T.J. Osborne, V. Stojevic, L. Vanderstraeten, F. Verstraete, Particles, holes, and solitons: a matrix product state approach. Phys. Rev. Lett. 111, 020402 (2013). doi:10.1103/PhysRevLett.111.020402

    Article  ADS  Google Scholar 

  293. J. Rincon, M. Ganahl, G. Vidal, Lieb-Liniger model with exponentially-decaying interactions: a continuous matrix product state study. Phys. Rev. B 92, 115107 (2015). doi:10.1103/PhysRevB.92.115107

    Article  ADS  Google Scholar 

  294. D. Draxler, J. Haegeman, F. Verstraete, M. Rizzi, Atomtronics - a continuous matrix product state approach (2016), arXiv:1609.09704

  295. J. Haegeman, D. Draxler, V. Stojevic, J.I. Cirac, T.J. Osborne, F. Verstraete, Quantum Gross–Pitaevskii Equation (2015), arXiv:1501.06575

  296. K. Wilson, J.B. Kogut, The renormalization group and the \(\epsilon \) expansion. Phys. Rep. 12, 75 (1974). doi:10.1016/0370-1573(74)90023-4

    Article  ADS  Google Scholar 

  297. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, Colorado, 1995)

    Google Scholar 

  298. E. Fradkin, Field Theories of Condensed Matter Physics, 2nd edn. (Cambridge University Press, Cambridge, 2013)

    Book  MATH  Google Scholar 

  299. P. Nozières, Theory Of Interacting Fermi Systems (W.A. Benjamin Inc., 1964)

    Google Scholar 

  300. R. Shankar, Renormalization-group approach to interacting fermions. Rev. Mod. Phys. 66, 129 (1994). doi:10.1103/RevModPhys.66.129

    Article  ADS  Google Scholar 

  301. L.D. Landau, Oscillations in a Fermi liquid. JETP 30, 1058 (1956)

    Google Scholar 

  302. L.D. Landau, The theory of a Fermi liquid. JETP 3, 920 (1957)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurens Vanderstraeten .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vanderstraeten, L. (2017). Introduction to Quantum Many-Body Physics. In: Tensor Network States and Effective Particles for Low-Dimensional Quantum Spin Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-64191-1_2

Download citation

Publish with us

Policies and ethics