Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The four-wave mixing process is well known in classical non-linear optics but has also been studied extensively within the framework of quantum theory, due to its usefulness as a source of heralded single photons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Alibart, J. Fulconis, G.K.L. Wong, S.G. Murdoch, W.J. Wadsworth, J.G. Rarity, Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment. New J. Phys. 8, 67 (2006)

    Article  ADS  Google Scholar 

  2. J. Chen, X. Li, P. Kumar, Two-photon-state generation via four-wave mixing in optical fibers. Phys. Rev. A 72, 033801 (2005)

    Article  ADS  Google Scholar 

  3. Q. Lin, F. Yaman, G.P. Agrawal, Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization. Phys. Rev. A 75, 023803 (2007)

    Article  ADS  Google Scholar 

  4. T.A. Birks, J.C. Knight, P.S. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)

    Article  ADS  Google Scholar 

  5. W.P. Grice, I.A. Walmsley, Spectral information and distinguishability in type-II down-conversion with a broadband pump. Phys. Rev. A 56, 1627–1634 (1997)

    Article  ADS  Google Scholar 

  6. G.P. Agarwal, Nonlinear Fiber Optics, 4th edn., Optics and Photonics (Academic Press, San Diego, 2006)

    Google Scholar 

  7. T. Aichele, A. Lvovsky, S. Schiller, Optical mode characterization of single photons prepared by means of conditional measurements on a biphoton state. Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 18, 237–245 (2002)

    Google Scholar 

  8. P.P. Rohde, W. Mauerer, C. Silberhorn, Spectral structure and decompositions of optical states, and their applications. New J. Phys. 9, 91 (2007)

    Article  ADS  Google Scholar 

  9. K. Garay-Palmett, H.J. McGuinness, O. Cohen, J.S. Lundeen, R. Rangel-Rojo, A.B. U’ren, M.G. Raymer, C.J. McKinstrie, S. Radic, I.A. Walmsley, Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber. Opt. Express 15, 14870–14886 (2007)

    Google Scholar 

  10. K. Garay-Palmett, R. Rangel-Rojo, A.B. U’Ren, Tailored photon pair preparation relying on full group velocity matching in fiber-based spontaneous four-wave mixing. J. Mod. Opt. 55, 3121–3131 (2008)

    Article  ADS  Google Scholar 

  11. O. Cohen, J.S. Lundeen, B.J. Smith, G. Puentes, P.J. Mosley, I.A. Walmsley, Tailored photon-pair generation in optical fibers. Phys. Rev. Lett. 102, 123603 (2009)

    Article  ADS  Google Scholar 

  12. K. Garay-Palmett, A.B. U’Ren, R. Rangel-Rojo, Tailored photon-pair sources based on inner-loop phasematching in fiber-based spontaneous four-wave mixing. Revista Mexicana de Física 57, 15–22 (2011)

    Google Scholar 

  13. L. Cui, X. Li, N. Zhao, Minimizing the frequency correlation of photon pairs in photonic crystal fibers. New J. Phys. 14, 123001 (2012)

    Article  ADS  Google Scholar 

  14. B. Fang, O. Cohen, J.B. Moreno, V.O. Lorenz, State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing. Opt. Express 21, 2707–2717 (2013)

    Article  ADS  Google Scholar 

  15. A. Clark, B. Bell, J. Fulconis, M.M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W.J. Wadsworth, J.G. Rarity, Intrinsically narrowband pair photon generation in microstructured fibres. New J. Phys. 13, 065009 (2011)

    Article  ADS  Google Scholar 

  16. B.J. Smith, P. Mahou, O. Cohen, J.S. Lundeen, I.A. Walmsley, Photon pair generation in birefringent optical fibers. Opt. Express 17, 23589–23602 (2009)

    Article  ADS  Google Scholar 

  17. A.R. McMillan, J. Fulconis, M. Halder, C. Xiong, J.G. Rarity, W.J. Wadsworth, Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm. Opt. Express 17, 6156–6165 (2009)

    Article  ADS  Google Scholar 

  18. A. McMillan, Development of an all-fibre source of heralded single photons. Ph.D. thesis, University of Bath, 2011

    Google Scholar 

  19. A.B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W.P. Grice, I.A. Walmsley, M.G. Raymer, Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion, Arxiv preprint arXiv:quant-ph/0611019 (2006)

  20. P.J. Mosley, J.S. Lundeen, B.J. Smith, P. Wasylczyk, A.B. U’Ren, C. Silberhorn, I.A. Walmsley, Heralded generation of ultrafast single photons in pure quantum states. Phys. Rev. Lett. 100, 133601 (2008)

    Article  ADS  Google Scholar 

  21. C.K. Law, I.A. Walmsley, J.H. Eberly, Continuous frequency entanglement: effective finite Hilbert space and entropy control. Phys. Rev. Lett. 84, 5304–5307 (2000)

    Article  ADS  Google Scholar 

  22. A. Migdall, S.G. Polyakov, J. Fan, J.C. Beinfang (eds.), Single-photon generation and detection, in Experimental Methods in the Physical Sciences, vol. 45 (Elsevier, 2013)

    Google Scholar 

  23. R. Boyd, Non-Linear Optics, 3rd edn. (Academic Press, Burlington, 2008)

    Google Scholar 

  24. H. Takesue, K. Inoue, 1.5-\(\upmu \)m band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber. Opt. Express 13, 7832–7839 (2005)

    Article  ADS  Google Scholar 

  25. K.F. Lee, J. Chen, C. Liang, X. Li, P.L. Voss, P. Kumar, Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber. Opt. Lett. 31, 1905–1907 (2006)

    Article  ADS  Google Scholar 

  26. S.D. Dyer, M.J. Stevens, B. Baek, S.W. Nam, High-efficiency, ultra low-noise all-fiber photon-pair source. Opt. Express 16, 9966–9977 (2008)

    Article  ADS  Google Scholar 

  27. S.D. Dyer, B. Baek, S.W. Nam, High-brightness, low-noise, all-fiber photon pair source. Opt. Express 17, 10290–10297 (2009)

    Article  ADS  Google Scholar 

  28. J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, P. Russell, Photonic crystal fiber source of correlated photon pairs. Opt. Express 13, 534–544 (2005)

    Article  ADS  Google Scholar 

  29. J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, J. Rarity, High brightness single mode source of correlated photon pairs using a photonic crystal fiber. Opt. Express 13, 7572–7582 (2005)

    Article  ADS  Google Scholar 

  30. C. Söller, B. Brecht, P.J. Mosley, L.Y. Zang, A. Podlipensky, N.Y. Joly, P.S.J. Russell, C. Silberhorn, Bridging visible and telecom wavelengths with a single-mode broadband photon pair source. Phys. Rev. A 81, 031801 (2010)

    Article  ADS  Google Scholar 

  31. R. Loudon, The Quantum Theory of Light, vol. 1, 2nd edn. (Oxford University Press, Oxford, 1973)

    Google Scholar 

  32. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics, 2nd edn. (Cambridge Unviersity Press, Cambridge, 1995)

    Google Scholar 

  33. R.H. Brown, R.Q. Twiss, Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956)

    Article  ADS  Google Scholar 

  34. X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, A. Zeilinger, Experimental generation of single photons via active multiplexing. Phys. Rev. A 83, 043814 (2011)

    Article  ADS  Google Scholar 

  35. G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, C. Silberhorn, An optimized photon pair source for quantum circuits. Opt. Express 21, 13975–13985 (2013)

    Article  ADS  Google Scholar 

  36. J.B. Spring, P.S. Salter, B.J. Metcalf, P.C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N.K. Langford, W.S. Kolthammer, M.J. Booth, I.A. Walmsley, On-chip low loss heralded source of pure single photons. Opt. Express 21, 13522–13532 (2013)

    Article  ADS  Google Scholar 

  37. A.M. Fox, Quantum Optics An Introduction, number 15 in Oxford Master Series in Physics, 1st edn. (Oxford University Press, Oxford, 2006)

    Google Scholar 

  38. A. Eckstein, A. Christ, P.J. Mosley, C. Silberhorn, Highly efficient single-pass source of pulsed single-mode twin beams of light. Phys. Rev. Lett. 106, 013603 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. A. Francis-Jones .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Francis-Jones, R.J.A. (2017). Photon Pair Generation via Four-Wave Mixing in Photonic Crystal Fibres. In: Active Multiplexing of Spectrally Engineered Heralded Single Photons in an Integrated Fibre Architecture. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-64188-1_2

Download citation

Publish with us

Policies and ethics