Advertisement

A Novel Visual Cryptography Scheme with Different Importance of Shadows

  • Peng LiEmail author
  • Zuquan Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10431)

Abstract

Traditional (k, n) visual cryptography scheme (VCS) encrypts a secret image into n shadows. Any k or more shadows can be printed on transparences and stacked together to reveal the secret image, while any k−1 or less shadows cannot get any information about the secret image. Most of the previous VCSs do not distinguish the importance of shadows. In this paper, we propose a novel (t, s, k, n) essential and non-essential visual cryptography scheme (ENVCS) with different importance of participants. According to the concept of constructing VCS from smaller schemes, we construct the basis matrices for (t, s, k, n)-ENVCS by concatenating the basis matrices of these smaller schemes. The constructed (t, s, k, n)-ENVCS is also progressive VCS. Experiments and analyses are conducted to verify the security and efficiency of the proposed method.

Keywords

Visual cryptography Access structure Essential participants Image secret sharing 

Notes

Acknowledgments

This work was partially supported by the Natural Science Funds of Hebei (Grant No. F2015502014), National Natural Science Foundation of China (No. 61602173) and the Fundamental Research Funds for the Central Universities (No. 16MS131, No. 13MS107).

References

  1. 1.
    Naor, M., Shamir, A.: Visual cryptography. In: Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995). doi: 10.1007/BFb0053419 Google Scholar
  2. 2.
    Weir, J., Yan, W.: A comprehensive study of visual cryptography. In: Shi, Y.Q. (ed.) Transactions on Data Hiding and Multimedia Security V. LNCS, vol. 6010, pp. 70–105. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14298-7_5 CrossRefGoogle Scholar
  3. 3.
    Gao, X., Deng, C., Li, X., Tao, D.: Local feature based geometric-resistant image information hiding. Cogn. Comput. 2(2), 68–77 (2010)CrossRefGoogle Scholar
  4. 4.
    An, L., Gao, X., Yuan, Y., Tao, D.: Robust lossless data hiding using clustering and statistical quantity histogram. Neurocomputing 77(1), 1–11 (2012)CrossRefGoogle Scholar
  5. 5.
    Cheddad, A., Condell, J., Curran, K., Kevitt, P.: Digital image steganography: survey and analysis of current methods. Signal Process. 90(3), 727–752 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    An, L., Gao, X., Li, X., Tao, D., Deng, C., Li, J.: Robust reversible watermarking via clustering and enhanced pixel-wise masking. IEEE Trans. Image Process. 21(8), 3598–3611 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Deng, C., Gao, X., Li, X., Tao, D.: Local histogram based geometric invariant image watermarking. Signal Process. 90(12), 3256–3264 (2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    Kuwakado, H., Tanaka, H.: Size-reduced visual secret sharing scheme. IEICE Trans. Fundam. Electron. E87-A(5), 1193–1197 (2004)Google Scholar
  9. 9.
    Yang, C.N., Chen, T.S.: New size-reduced visual secret sharing schemes with half reduction of shadow size. IEICE Trans. Fundam. Electron. E89-A(2), 620–625 (2006)CrossRefGoogle Scholar
  10. 10.
    Yang, C.N.: New visual secret sharing schemes using probabilistic method. Pattern Recogn. Lett. 25(4), 481–494 (2004)CrossRefGoogle Scholar
  11. 11.
    Cimato, S., Prisco, R., Santis, A.: Probabilistic visual cryptography schemes. Comput. J. 49(1), 97–107 (2006)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kafri, O., Keren, E.: Encryption of pictures and shapes by random grids. Opt. Lett. 12(6), 377–379 (1987)CrossRefGoogle Scholar
  13. 13.
    Chen, T.H., Tsao, K.H.: Visual secret sharing by random grids revisited. Pattern Recogn. 42(9), 2203–2217 (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Chen, T.H., Tsao, K.H.: Threshold visual secret sharing by random grids. J. Syst. Softw. 84(7), 1197–1208 (2011)CrossRefGoogle Scholar
  15. 15.
    Li, P., Yang, C.N., Wu, C.C., Kong, Q., Ma, Y.: Essential secret image sharing scheme with different importance of shadows. J. Vis. Commun. Image R 24(7), 1106–1114 (2013)CrossRefGoogle Scholar
  16. 16.
    Yang, C.N., Li, P., Wu, C.C., Cai, S.R.: Reducing shadow size in essential secret image sharing by conjunctive hierarchical approach. Signal Process. Image Commun. 31(1), 1–9 (2015)CrossRefGoogle Scholar
  17. 17.
    Chen, S.K.: Essential secret image sharing with increasable shadows. Opt. Eng. 55, 013103 (2016)CrossRefGoogle Scholar
  18. 18.
    Chen, C.C., Chen, S.C.: Two-layered structure for optimally essential secret image sharing scheme. J. Vis. Commun. Image Represent. 38, 595–601 (2016)CrossRefGoogle Scholar
  19. 19.
    Arumugam, S., Lakshmanan, R., Nagar, A.K.: On (k, n)*-Visual Cryptography Scheme. Des. Codes Crypt. 71(1), 153–162 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Guo, T., Liu, F., Wu, C., Ren, Y., Wang, W.: On (kn) visual cryptography scheme with t essential parties. In: Padró, C. (ed.) ICITS 2013. LNCS, vol. 8317, pp. 56–68. Springer, Cham (2014). doi: 10.1007/978-3-319-04268-8_4 CrossRefGoogle Scholar
  21. 21.
    Ateniese, G., Blundo, C., Santis, A., Stinson, D.R.: Visual cryptography for general access structures. Inf. Comput. 129(2), 86–106 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Yan, X., Wang, S., Niu, X., Yang, C.-N.: Essential visual cryptographic scheme with different importance of shares. In: Loo, C.K., Yap, K.S., Wong, K.W., Beng Jin, A.T., Huang, K. (eds.) ICONIP 2014, Part III. LNCS, vol. 8836, pp. 636–643. Springer, Cham (2014). doi: 10.1007/978-3-319-12643-2_77 Google Scholar
  23. 23.
    Blundo, C., De Santis, A., Stinson, D.R.: On the contrast in visual cryptography schemes. J. Crypt. 12(4), 261–289 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mathematics and PhysicsNorth China Electric Power UniversityBaodingChina

Personalised recommendations