A Blind Reversible Data Hiding Method for High Dynamic Range Images Taking Advantage of Sparse Histogram

  • Masaaki FujiyoshiEmail author
  • Hitoshi KiyaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10431)


This paper proposes a method of reversible data hiding (RDH) for high dynamic range (HDR) images. An RDH method once distorts an image to hide data to the image, and the method takes data out and simultaneously recovers the original image without any distortion from the distorted image carrying hidden data. Whereas conventional RDH methods are for ordinary images whose pixel values are uniformly quantized integers, the proposed method focuses HDR images whose pixel values are non-uniformly quantized floating-point numbers. HDR images have a sparse histogram, i.e., many zero points are scattered over the tonal distribution of images, and the method modifies multiple peak and zero points of the histogram to hide data to an image. In addition, while an RDH method generally needs to memorize a set of image-dependent parameters for hidden data extraction and original image recovery, the proposed method is free from parameter memorization by introducing two mechanisms; restriction of histogram modification and a parameter hiding prior to data hiding. Moreover, keys are required to take hidden data out in the proposed method. Experimental results show the effectiveness of the proposed method.


Digital watermarking Steganography Annotation 



This work has been partly supported by JSPS KAKENHI Grant Number JP15K00156.


  1. 1.
    Wu, M., Liu, B.: Multimedia Data Hiding. Springer, New York (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Cox, I.J., Miller, M.L., Bloom, J.A., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2008)Google Scholar
  3. 3.
    Fridrich, J.: Steganography in Digital Media. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  4. 4.
    Langelaar, G.C., Setyawan, I., Lagendijk, R.L.: Watermarking digital image and video data. IEEE Signal Process. Mag. 17(5), 20–46 (2000)CrossRefGoogle Scholar
  5. 5.
    Barni, M.: What is the future for watermarking? (part II). IEEE Signal Process. Mag. 20(6), 53–59 (2003)CrossRefGoogle Scholar
  6. 6.
    Tachibana, T., Fujiyoshi, M., Kiya, H.: A removable watermarking scheme retaining the desired image quality. In: Proceedings of IEEE International Symposium on Intelligent Signal Processing and Communication Systems, pp. 538–542, December 2003Google Scholar
  7. 7.
    Barni, M.: What is the future for watermarking? (part I). IEEE Signal Process. Mag. 20(5), 55–59 (2003)CrossRefGoogle Scholar
  8. 8.
    Kuo, C.-C.J., Kalker, T., Zhou, W. (eds.): Digital rights management. IEEE Signal Process. Mag. 21(2) 11–117 (2004)Google Scholar
  9. 9.
    Sae-Tang, W., Liu, S., Fujiyoshi, M., Kiya, H.: A copyright-and privacy-protected image trading system using fingerprinting in discrete wavelet domain with JPEG 2000. IEICE Trans. Fundam. E97-A(11), 2107–2113 (2014)Google Scholar
  10. 10.
    Caldelli, R., Filippini, F., Becarelli, R.: Reversible watermarking techniques: an overview and a classification. EURASIP J. Inf. Secur., Article ID 134546 (2010)Google Scholar
  11. 11.
    Shi, Y.Q., Li, X., Zhang, X., Wu, H.T., Ma, B.: Reversible data hiding: advances in the past two decades. IEEE Access 4, 3210–3237 (2016)CrossRefGoogle Scholar
  12. 12.
    Ni, Z., Shi, Y.Q., Ansari, N., Su, W.: Reversible data hiding. IEEE Trans. Circ. Syst. Video Technol. 16(3), 354–362 (2006)CrossRefGoogle Scholar
  13. 13.
    Fujiyoshi, M.: Generalized histogram shifting-based blind reversible data hiding with balanced and guarded double side modification. In: Shi, Y.Q., Kim, H.-J., Pérez-González, F. (eds.) IWDW 2013. LNCS, vol. 8389, pp. 488–502. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-43886-2_35 Google Scholar
  14. 14.
    Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., Myszkowski, K.: High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting, 2nd edn. Morgan Kaufmann, June 2010Google Scholar
  15. 15.
    Dufaux, F., Le Callet, P., Mantiu, R., Mrak, M. (eds.): High Dynamic Range Video: From Acquisition to Display and Applications. Academic Press, April 2016Google Scholar
  16. 16.
    Guerrini, F., Okuda, M., Adami, N., Leonardi, R.: High dynamic range image watermarking robust against tone-mapping operators. IEEE Trans. Inf. Forensics Secur. 6(2), 283–295 (2011)CrossRefGoogle Scholar
  17. 17.
    Wu, J.L.: Robust watermarking framework for high dynamic range images against tone-mapping attacks. In: Gupta, M.D. (ed.) Watermarking, vol. 2, 229–242. InTech, May 2012Google Scholar
  18. 18.
    Autrusseau, F., Goudia, D.: Non linear hybrid watermarking for high dynamic range images. In: Proceedings of IEEE International Conference on Image Processing, September 2013Google Scholar
  19. 19.
    Maiorana, E., Campisi, P.: High-capacity watermarking of high dynamic range images. EURASIP J. Image Video Process., January 2016Google Scholar
  20. 20.
    Lin, Y.T., Wang, C.M., Chen, W.S., Lin, F.P., Lin, W.: A novel data hiding algorithm for high dynamic range images. IEEE Trans. Multimedia 19(1), 163–196 (2017)CrossRefGoogle Scholar
  21. 21.
    Murofushi, T., Iwahashi, M., Kiya, H.: An integer tone mapping operation for HDR images expressed in floating point data. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2479–2483, May 2013Google Scholar
  22. 22.
    Yu, C.M., Wu, K.C., Wang, C.M.: A distortion-free data hiding scheme for high dynamic range images. Displays 32(5), 225–236 (2011)CrossRefGoogle Scholar
  23. 23.
    Chang, C.C., Nguyen, T.S., Lin, C.C.: A new distortion-free data embedding scheme for high-dynamic range images. Multimedia Tools Appl. 75(1), 145–163 (2016)CrossRefGoogle Scholar
  24. 24.
    Hwang, J.H., Kim, J.W., Choi, J.U.: A reversible watermarking based on histogram shifting. In: Shi, Y.Q., Jeon, B. (eds.) IWDW 2006. LNCS, vol. 4283, pp. 348–361. Springer, Heidelberg (2006). doi: 10.1007/11922841_28 CrossRefGoogle Scholar
  25. 25.
    Kuo, W.-C., Jiang, D.-J., Huang, Y.-C.: Reversible data hiding based on histogram. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007. LNCS, vol. 4682, pp. 1152–1161. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74205-0_119 Google Scholar
  26. 26.
    Ward, G.: Real pixels. In: Arvo, J. (ed.) Graphics Gems II. Graphics Gems, pp. 80–83. Academic Press (1991)Google Scholar
  27. 27.
    Kainz, F., Bogart, R., Hess, D.: The OpenEXR image file format. In: Proceedings of ACM SIGGRAPH, July 2003Google Scholar
  28. 28.
    Iwahashi, M., Kobayashi, H., Kiya, H.: Lossy compression of sparse histogram images. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1361–1364, March 2012Google Scholar
  29. 29.
    Odaka, T., Sae-Tang, W., Fujiyoshi, M., Kobayashi, H., Iwahashi, M., Kiya, H.: An efficient lossless compression method using histogram packing for HDR images in OpenEXR format. IEICE Trans. Fundam. E97-A(11), 2181–2183 (2014)Google Scholar
  30. 30.
    Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Trans. Graph. 21(3), 267–276 (2002)CrossRefGoogle Scholar
  31. 31.
    Fujiyoshi, M.: A histogram shifting-based blind reversible data hiding method with a histogram peak estimator. In: Proceedings of IEEE International Symposium on Communications and Information Technologies, pp. 318–323, October 2012Google Scholar
  32. 32.
    Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graph. 30(4), July 2011Google Scholar
  33. 33.
    Fujiyoshi, M.: A near-lossless data hiding method with an improved quantizer. In: Proceedings of IEEE International Symposium on Circuits and Systems, pp. 2289–2292, June 2014Google Scholar
  34. 34.
    Fujiyoshi, M., Kiya, H.: A visually-lossless data hiding method based on histogram modification. In: Proceedings of IEEE International Symposium on Circuits and Systems, pp. 1692–1695, May 2012Google Scholar
  35. 35.
    Zhang, X.: Reversible data hiding in encrypted image. IEEE Signal Process. Lett. 18(4), 255–258 (2011)CrossRefGoogle Scholar
  36. 36.
    Hong, W., Chen, T.S., Wu, H.Y.: An improved reversible data hiding in encrypted images using side match. IEEE Signal Process. Lett. 19(4), 199–202 (2012)CrossRefGoogle Scholar
  37. 37.
    IEEE Standard for Floating-Point Arithmetic, 754–2008 (2008)Google Scholar
  38. 38.
    Aydın, T.O., Mantiuk, R., Seidel, H.P.: Extending quality metrics to full dynamic range images. In: Proceedings of SPIE Human Vision and Electronic Imaging XIII, San Jose, USA, vol. 6806, 10 January 2008Google Scholar
  39. 39.
    Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multi-scale structural similarity for image quality assessment. In: Proceedings of IEEE Asilomar Conference on Signals, Systems and Computers, November 2003Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Information and Communication SystemsTokyo Metropolitan UniversityHino-shi, TokyoJapan

Personalised recommendations