A Steganalysis Scheme for AAC Audio Based on MDCT Difference Between Intra and Inter Frame

  • Yanzhen RenEmail author
  • Qiaochu Xiong
  • Lina Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10431)


AAC (Advanced Audio Coding), as an efficient audio codec, has been used widely in mobile internet applications. Steganographies based on AAC are emerging and bringing new challenges to information content security. In this paper, an AAC steganalysis scheme to detect the steganographies which embedded secret information by modifying MDCT coefficient is proposed. The modification of MDCT coefficient will cause the statistical characteristic of the difference between inter-frame and intra-frame changed simultaneously. Based on this ideal, we proposed a scheme to extract combination features to classify cover and stego audio. There are 16 groups of sub-features to represent the correlation characteristics between the multi-order differential coefficients of Intra and Inter frame (MDI2), each sub-feature’s performance are analyzed in this paper, and an ensemble classifier is used to realize the steganalyzer. Experiment results show that the detection accuracy of the proposed scheme are above 85.34% when the relative embed rate is over 50%, this performance is obviously better than the literatures methods. Due to the similarity of the coding principle of AAC and MP3, the proposed features can be applied into MP3 steganalysis.


MDCT AAC MP3 Steganography Steganalysis 


  1. 1.
    Brandenburg, K.: MP3, AAC explained. In: Audio Engineering Society Conference: 17th International Conference: High-Quality Audio Coding. Audio Engineering Society (1999)Google Scholar
  2. 2.
    Wang, Y.J., Guo, L., Wang, C.P.: Steganography method for advanced audio coding. J. Chin. Comput. Syst. 32(7), 1465–1468 (2011)Google Scholar
  3. 3.
    Zhu, J., Wang, R., Yan, D.: The sign bits of Huffman codeword-based steganography for AAC audio. In: International Conference on Multimedia Technology, pp. 1–4 (2010)Google Scholar
  4. 4.
    Wang, Y., Guo, L., Wei, Y., Wang, C.: A steganography method for AAC audio based on escape sequences. In: International Conference on Multimedia Information NETWORKING and Security, pp. 841–845 (2010)Google Scholar
  5. 5.
    Zhu, J.: The research on information hiding in MPEG-2/4 advanced audio coding (AAC). Master’s thesis, Ningbo University (2012)Google Scholar
  6. 6.
    Zhu, J., Wang, R.D., Li, J., Yan, D.Q.: A Huffman coding section-based steganography for AAC audio. Inf. Technol. J. 10(10), 1983–1988 (2011)CrossRefGoogle Scholar
  7. 7.
    Shuzheng, X.U., Peng, Z., Wang, P., Yang, H.: Performance analysis of data hiding in MPEG-4 AAC audio. Tsinghua Sci. Technol. 14(1), 55–61 (2009)CrossRefGoogle Scholar
  8. 8.
    Yan, D., Wang, R., Xianmin, Y., Zhu, J.: Steganalysis for MP3Stego using differential statistics of quantization step. Digit. Signal Proc. 23(4), 1181–1185 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Yan, D., Wang, R.: Detection of MP3Stego exploiting recompression calibration-based feature. Multimed. Tools Appl. 72(1), 865–878 (2014)CrossRefGoogle Scholar
  10. 10.
    Yu, X., Wang, R., Yan, D.: Detecting MP3Stego using calibrated side information features. J. Softw. 8(10), 2628–2636 (2013)CrossRefGoogle Scholar
  11. 11.
    Qiao, M., Sung, A.H., Liu, Q.: MP3 audio steganalysis. Inf. Sci. 231(9), 123–134 (2013)CrossRefGoogle Scholar
  12. 12.
    Kuriakose, R., Premalatha, P.: A novel method for MP3 steganalysis. In: Jain, L.C., Patnaik, S., Ichalkaranje, N. (eds.) Intelligent Computing, Communication and Devices. AISC, vol. 308, pp. 605–611. Springer, New Delhi (2015). doi: 10.1007/978-81-322-2012-1_65 CrossRefGoogle Scholar
  13. 13.
    Jin, C., Wang, R., Yan, D., Ma, P., Yang, K.: A novel detection scheme for MP3Stego with low payload. In: IEEE China Summit & International Conference on Signal and Information Processing, pp. 602–606 (2014)Google Scholar
  14. 14.
  15. 15.
    Watkinson: Introduction to Digital Audio Coding and Standards. WatkinsonIntroductionGoogle Scholar
  16. 16.
    Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)CrossRefGoogle Scholar
  17. 17.
    Tang, W., Li, H., Luo, W., Huang, J.: Adaptive steganalysis against wow embedding algorithm. In: ACM Workshop on Information Hiding and Multimedia, Security, pp. 91–96 (2014)Google Scholar
  18. 18.
    Denemark, T., Sedighi, V., Holub, V., Cogranne, R.: Selection-channel-aware rich model for steganalysis of digital images. In: IEEE Workshop on Information Forensic and Security, pp. 48–53 (2014)Google Scholar
  19. 19.
    Tang, W., Li, H., Luo, W., Huang, J.: Adaptive steganalysis based on embedding probabilities of pixels. IEEE Trans. Inf. Forensics Secur. 11(4), 1–1 (2015)CrossRefGoogle Scholar
  20. 20.
    Holub, V., Fridrich, J.: Phase-aware projection model for steganalysis of jpeg images. In: SPIE, Electronic Imaging, Media Watermarking, Security, and Forensics, vol. XVII, pp. 94090T–94090T-11 (2015)Google Scholar
  21. 21.
    Kodovsky, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2012)CrossRefGoogle Scholar
  22. 22.
    Pevny, T., Fridrich, J.: Merging Markov and DCT features for multi-class JPEG steganalysis. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 6505, pp. 650503–650503-13 (2007)Google Scholar
  23. 23.
    Pevn, T., Fridrich, J.: Multi-class blind steganalysis for JPEG images. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 6072, pp. 257–269 (2006)Google Scholar
  24. 24.
    Wang, K., Han, J., Wang, H.: Digital video steganalysis by subtractive prediction error adjacency matrix. Multimed. Tools Appl. 72(1), 313–330 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Da, T., Li, Z.T., Feng, B.: A video steganalysis algorithm for H.264/AVC based on the Markov features. In: Huang, D.-S., Jo, K.-H., Hussain, A. (eds.) ICIC 2015. LNCS, vol. 9226, pp. 47–59. Springer, Cham (2015). doi: 10.1007/978-3-319-22186-1_5 CrossRefGoogle Scholar
  26. 26. (2011).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Key Laboratory of Aerospace Information Security and Trusted ComputingMinistry of EducationWuhanChina
  2. 2.School of Computer ScienceWuhan UniversityWuhanChina

Personalised recommendations