Skip to main content

Simulation Optimization Under Input Model Uncertainty

  • Chapter
  • First Online:
Advances in Modeling and Simulation

Part of the book series: Simulation Foundations, Methods and Applications ((SFMA))

Abstract

Stochastic simulation is driven by the input model, which is a collection of distributions that model the randomness in the system. Since the input model is often estimated from data of past observations, simulation is subject to the so-called input model uncertainty due to the finiteness of the data. As a result, optimizing the corresponding simulation model may lead to solutions that perform poorly under the true model. In the past, simulation optimization has been mostly studied under the assumption that the input model is accurate, thus only accounting for stochastic uncertainty in the system but ignoring input model uncertainty. In this chapter, we aim to answer two questions: (1) how to quantify the impact of input model uncertainty on the simulation optimization problem; (2) how to “optimize” a simulation model when taking into account input model uncertainty. To address the first question, we provide asymptotic results and confidence intervals on the optimality gap and performance of solutions. For the second question, we review a recently proposed framework of Bayesian risk optimization that captures trade-off between the expected performance and the variability of the actual performance. Many research questions still remain for simulation optimization under input model uncertainty, and will be discussed briefly at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ankenman B, Nelson BL, Staum J (2010) Stochastic kriging for simulation metamodeling. Oper Res 58(2):371–382

    Article  MathSciNet  MATH  Google Scholar 

  • Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Math. Finance 9(3):203–228

    MathSciNet  MATH  Google Scholar 

  • Barton RR, Nelson BL, Xie W (2013) Quantifying input uncertainty via simulation confidence intervals. INFORMS J Comput 26(1):74–87

    Article  MathSciNet  MATH  Google Scholar 

  • Barton RR, Schruben LW (1993) Uniform and bootstrap resampling of empirical distributions. In: Evans GW, Mollaghasemi M, Russell MEC, Biles WE (eds) Proceedings of the 25th conference on Winter simulation. ACM, pp 503–508

    Google Scholar 

  • Barton RR, Schruben LW (2001) Resampling methods for input modeling. In: Peters BA, Smith JS, Medeiros DJ, Rohrer MW (eds) Proceedings of the 2001 winter simulation conference, vol 1. Piscataway. New Jersey, Institute of Electrical and Electronics Engineers Inc., pp 372–378

    Google Scholar 

  • Bayraksan G, Love DK (2015) Data-driven stochastic programming using phi-divergences. In: Tutorials in operations research, pp 1–19

    Google Scholar 

  • Ben-Tal A, Den Hertog D, De Waegenaere A, Melenberg B, Rennen G (2013) Robust solutions of optimization problems affected by uncertain probabilities. Manag Sci 59(2):341–357

    Article  Google Scholar 

  • Bertsimas D, Brown DB, Caramanis C (2011) Theory and applications of robust optimization. SIAM Rev 53(3):464–501

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Gupta V, Kallus N (2013) Data-driven robust optimization. arXiv:1401.0212

  • Bhatnagar S, Prasad HL, Prashanth LA (2012) Stochastic recursive algorithms for optimization: simultaneous perturbation methods, vol 434. Springer

    Google Scholar 

  • Casella G, Berger RL (2002) Statistical inference, vol 2. Duxbury Pacific Grove, CA

    MATH  Google Scholar 

  • Cheng RCH, Holloand W (1997) Sensitivity of computer simulation experiments to errors in input data. J Stat Comput Simul 57(1–4):219–241

    Article  Google Scholar 

  • Chick S (2001) Input distribution selection for simulation experiments: accounting for input uncertainty. Oper Res 49(5):744–758

    Article  MathSciNet  Google Scholar 

  • Corlu CG, Biller B (2013) A subset selection procedure under input parameter uncertainty. In: Pasupathy R, Kim SH, Tolk A, Hill R, Kuhl ME (eds) Proceedings of the 2013 winter simulation conference. Institute of Electrical and Electronics Engineers Inc., Piscataway, New Jersey, pp 463–473

    Google Scholar 

  • Delage E, Ye Y (2010) Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper Res 58(3):595–612

    Article  MathSciNet  MATH  Google Scholar 

  • Esfahani PM, Kuhn D (2015) Data-driven distributionally robust optimization using the wasserstein metric: performance guarantees and tractable reformulations. arXiv:1505.05116

  • Fan W, Hong JL, Zhang X (2013) Robust selection of the best. Pasupathy R, Kim SH, Tolk A, Hill R, Kuhl ME(eds) Proceedings of the 2013 winter simulation conference. Piscataway, New Jersey, Institute of Electrical and Electronics Engineers Inc, pp 868–876

    Google Scholar 

  • Ferguson TS (1973) A bayesian analysis of some nonparametric problems. Ann Stat 1(2):209–230

    Google Scholar 

  • Gao S, Xiao H, Zhou E, Chen W (2017) Robust ranking and selection with optimal computing budget allocation. Automatica 81:30–36

    Article  MathSciNet  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2014) Bayesian data analysis. Chapman & Hall

    Google Scholar 

  • Gotoh J, Kim MJ, Lim A (2015) Robust empirical optimization is almost the same as mean-variance optimization. Available at SSRN 2827400

    Google Scholar 

  • Hans F, Schied A (2002) Stochastic finance: an introduction in discrete time

    Google Scholar 

  • Hu J, Wang Y, Zhou E, Fu MC, Marcus SI (2012) A survey of some model-based methods for global optimization. In: optimization, control, and applications of stochastic systems, Springer, pp 157–179

    Google Scholar 

  • Jiang R, Guan Y (2015) Data-driven chance constrained stochastic program. Math Program, pp 1–37

    Google Scholar 

  • Kleywegt A, Shapiro A, Homem de Mello T (2001) The sample average approximation method for stochastic discrete optimization. SIAM J Optim 12:479–502

    Article  MathSciNet  MATH  Google Scholar 

  • Lam H (2016) Robust sensitivity analysis for stochastic systems. Math Oper Res 41(4):1248–1275

    Article  MathSciNet  MATH  Google Scholar 

  • Lemann EL, Casella G (1998) Theory of point estimation. Springer, New York

    Google Scholar 

  • Popescu I (2007) Robust mean-covariance solutions for stochastic optimization. Oper Res 55(1):98–112

    Article  MathSciNet  MATH  Google Scholar 

  • Rubinstein RY , Shapiro A (1993) Discrete event systems: sensitivity analysis and stochastic optimization by the score function method. Wiley

    Google Scholar 

  • Shapiro A (1991) Asymptotic analysis of stochastic programs. Ann Oper Res 30(1):169–186

    Article  MathSciNet  MATH  Google Scholar 

  • Song E, Nelson B (2016) Input-output uncertainty comparisons for optimization via simulation. Oper Res (Submitted)

    Google Scholar 

  • Song E, Nelson BL (2015) Quickly assessing contributions to input uncertainty. IIE Transactions 47(9):893–909

    Article  Google Scholar 

  • Song E, Nelson BL, Hong LJ (2015) Input uncertainty and indifference-zone ranking & selection. In: Yilmaz L, Chan WKV, Moon I, Roeder TMK, Macal C, Rossetti MD (eds) Proceedings of the 2015 winter simulation conference. Institute of Electrical and Electronics Engineers Inc, Piscataway, New Jersey, pp 414–424

    Google Scholar 

  • Spall JC (1992) Multivariate stochastic approximation using simultaneous perturbation gradient approximation. IEEE Trans Autom Control 37:332–341

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Z, Glynn PW, Ye Y (2016) Likelihood robust optimization for data-driven problems. Comput Manag Sci 13(2):241–261

    Article  MathSciNet  Google Scholar 

  • Wiesemann W, Kuhn D, Sim M (2014) Distributionally robust convex optimization. Oper Res 62(6):1358–1376

    Article  MathSciNet  MATH  Google Scholar 

  • Wu D, Zhou E (2017) Ranking and selection under input uncertainty: a budget allocation formulation. In: winter simulation conference, (Submitted)

    Google Scholar 

  • Wu D, Zhu H, Zhou E (2016) Asymptotics of bayesian risk formulations for data-driven stohastic optimization. SIAM J Optim, (Under review). arXiv:1609.08665

  • Xie W, Nelson BL, Barton RR (2014a) A bayesian framework for quantifying uncertainty in stochastic simulation. Oper Res 62(6):1439–1452

    Article  MathSciNet  MATH  Google Scholar 

  • Xie W, Nelson BL, Barton RR (2014b) Statistical uncertainty analysis for stochastic simulation with dependent input models. In: Tolk A, Diallo SY, Ryzhov IO, Yilmaz L, Buckley S, Miller JA (eds) Proceedings of the 2014 winter simulation conference. Institute of Electrical and Electronics Engineers Inc, Piscataway, New Jersey, pp 674–685

    Google Scholar 

  • Zhou E, Xie W (2015) Simulation optimization when facing input uncertainty. In: Yilmaz L, Chan WKV, Moon I, Roeder TMK, Macal C, Rossetti MD (eds) Proceedings of the 2015 winter simulation conference. Institute of Electrical and Electronics Engineers Inc, Piscataway, New Jersey, pp 3714–3724

    Google Scholar 

  • Zhu H, Hale J, Zhou E (2016) Optimizing conditional value-at-risk via gradient-based adaptive stochastic search. In: Roeder TMK, Frazier PI, Szechtman R, Zhou E, Huschka T, Chick SE (eds) Proceedings of the 2016 winter simulation conference. Institute of Electrical and Electronics Engineers Inc, Piscataway, New Jersey, pp 726–737

    Google Scholar 

  • Zhu H, Zhou E (2015) Risk quantification in stochastic simulation under input uncertainty. ACM Trans Model Comp Simul (Under review). arXiv:1507.06015

  • Zouaoui F, Wilson JR (2003) Accounting for parameter uncertainty in simulation input modeling. IIE Trans 35(9):781–792

    Article  Google Scholar 

  • Zouaoui F, Wilson JR (2004) Accounting for input-model and input-parameter uncertainties in simulation. IIE Trans 36(11):1135–1151

    Article  Google Scholar 

  • Zymler S, Kuhn D, Rustem B (2013) Distributionally robust joint chance constraints with second-order moment information. Math Program 137(1–2):167–198

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors’ research was partially supported by the National Science Foundation under Grant CAREER CMMI-1453934.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enlu Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG (outside the USA)

About this chapter

Cite this chapter

Zhou, E., Wu, D. (2017). Simulation Optimization Under Input Model Uncertainty. In: Tolk, A., Fowler, J., Shao, G., Yücesan, E. (eds) Advances in Modeling and Simulation. Simulation Foundations, Methods and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-64182-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64182-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64181-2

  • Online ISBN: 978-3-319-64182-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics