Advertisement

Operations on Maps

  • Mircea Vasile Diudea
Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 10)

Abstract

Design of structures discussed in this book is based on “operations on maps” (topological-geometrical modifications of a parent map), merely applied on the Platonic solids: tetrahedron (T), cube (C), octahedron (O), dodecahedron (D) and icosahedron (I); a map M is a discretized surface domain. The operations discussed in the Chap.  2 are: dual d, medial m, truncation t, polygonal mapping p n , snub s, leapfrog l, quadrupling/chamfering q, and septupling/wirl s n .

The figure sequence of a modified polyhedron: {v, e, f}, is given function of the edges e of the parent polyhedron; all the parameters herein presented refer to regular maps. The symmetry of parents is preserved by running these operations. An Atlas of single-shell clusters derived from the Platonic solids is also presented.

References

  1. Bak P (1986) Icosahedral crystals: where are the atoms? Phys Rev Lett 56:861–864CrossRefGoogle Scholar
  2. Conway JH, Burgiel H, Goodman-Strauss C (2008) The symmetries of things. ISBN: 978-1-56881-220-5Google Scholar
  3. Coxeter HSM (1973) Petrie polygons; the generalized petrie polygon. In: Regular polytopes, 3rd edn. Dover, New YorkGoogle Scholar
  4. Coxeter HSM (1974) Regular complex polytopes. Cambridge University Press, Cambridge (Section 11.3 Petrie polygons)Google Scholar
  5. de Bruijn NG (1981) Algebraic theory of penrose’s non-periodic tilings of the plane, I, II. Proc Nederl Acad Wetensch Proc Ser A 84:39–66Google Scholar
  6. Diudea MV (2003) Capra-a leapfrog related operation on maps. Stud Univ Babes-Bolyai 48:3–16Google Scholar
  7. Diudea MV (2004) Covering forms in nanostructures. Forma (Tokyo) 19:131–163Google Scholar
  8. Diudea MV (2005a) Nanoporous carbon allotropes by septupling map operations. J Chem Inf Model 45:1002–1009CrossRefGoogle Scholar
  9. Diudea MV (2005b) Covering nanostructures. In: Diudea MV (ed) Nanostructures-novel architecture. Nova, New York, pp 203–242Google Scholar
  10. Diudea MV (2010) Nanomolecules and nanostructures – polynomials and indices, MCM, No 10, Univ Kragujevac, SerbiaGoogle Scholar
  11. Diudea MV, John PE (2001) Covering polyhedral tori. MATCH Commun Math Comput Chem 44:103–116Google Scholar
  12. Diudea MV, Nagy CL (2007) Periodic nanostructures. Springer, DordrechtCrossRefGoogle Scholar
  13. Diudea MV, Parv B, Ursu O (2003) TORUS. University Babes-Bolyai, ClujGoogle Scholar
  14. Diudea MV, Ştefu M, John PE, Graovac A (2006) Generalized operations on maps. Croat Chem Acta 79:355–362Google Scholar
  15. Eberhard V (1891) Zur morphologie der polyeder. B. G. Teubner, LeipzigGoogle Scholar
  16. Fowler PW (1986) How unusual is C60? magic numbers for carbon clusters. Chem Phys Lett 131:444–450CrossRefGoogle Scholar
  17. Goldberg M (1937) A class of multi-symmetric polyhedral. Tôhoku Math J 43:104–108Google Scholar
  18. Grünbaum B, Shephard GC (1987) Tilings and patterns. W. H. Freeman, New YorkGoogle Scholar
  19. Johnson NW (1966) The theory of uniform polytopes and honeycombs, Ph.D. Dissertation, University of TorontoGoogle Scholar
  20. Kramer P (1982) Non-periodic central space filling with icosahedral symmetry using copies of seven elementary cells. Acta Cryst A 38:257–264CrossRefGoogle Scholar
  21. Nagy CL, Diudea MV (2005) JSChem. University Babes–Bolyai, ClujGoogle Scholar
  22. Nagy CL, Diudea MV (2009) Nano studio. University Babes–Bolyai, ClujGoogle Scholar
  23. Pisanski T, Randić M (2000) Bridges between geometry and graph theory, geometry at work. MAA Notes 53:174–194Google Scholar
  24. Schläfli L (1901) Theorie der vielfachen Kontinuität Zürcher und Furrer, Zürich (Reprinted in:Ludwig Schläfli, 1814–1895, Gesammelte Mathematische Abhandlungen, Band 1, 167–387, Verlag Birkhäuser, Basel, 1950)Google Scholar
  25. Socolar JES, Steinhardt PJ, Levine D (1986) Quasicrystals with arbitrary orientational symmetry. Phys Rev B 32:5547–5551CrossRefGoogle Scholar
  26. Stefu M, Diudea MV (2005) CageVersatile_CVNET. Babes–Bolyai University, ClujGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mircea Vasile Diudea
    • 1
  1. 1.Department of Chemistry, Faculty of Chemistry and Chemical EngineeringBabes-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations