Skip to main content

Spongy Hypercubes

  • Chapter
  • First Online:
Multi-shell Polyhedral Clusters

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 10))

Abstract

Hypercube Q n is an n-dimensional analogue of the Cube (n = 3); it is a regular graph of degree n and can be obtained by the Cartesian product of P 2 graph or can be drawn as a Hӓsse diagram. Hypercube is a regular polytope in the space of any number of dimensions; its Schläfli symbols is {4,3n−2} and has as a dual the n-orthoplex {3n−2,4}. The number of k-cubes contained in an n-cube Q n (k) comes from the coefficients of (2k + 1)n. A “spongy hypercube” G(d, v, Q n + 1) = G(d, v) □n P 2 is defined in this chapter; on each edge of the original polyhedral graph, a local hypercube Q n is evolved; these hypercubes are incident in a hypervertex, according to the original degree, d. It means that, in a spongy hypercube, the original 2-faces are not counted.

The k-faces of a spongy hypercube are combinatorially counted from the previous rank faces; their alternating summation accounts for the genus of the embedded surface. Tubular and toroidal hypercubes were also designed. Analytical formulas for counting Omega and Cluj polynomials, respectively, in hypercubes were derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashrafi AR, Jalali M, Ghorbani M, Diudea MV (2008) Computing PI and Omega polynomials of an infinite family of fullerenes. MATCH Commun Math Comput Chem 60:905–916

    CAS  Google Scholar 

  • Baker KA, Fishburn P, Roberts FS (1971) Partial orders of dimension 2. Networks 2(1):11–28

    Article  Google Scholar 

  • Balinski ML (1961) On the graph structure of convex polyhedra in n-space. Pac J Math 11(2):431–434

    Article  Google Scholar 

  • Coxeter HSM (1973) Regular polytopes, 3rd edn. Dover, New York

    Google Scholar 

  • Coxeter HSM (1974) Regular complex polytopes. Cambridge University Press, Cambridge

    Google Scholar 

  • Coxeter HSM (1982) Ten toroids and fifty-seven hemi-dodecahedra. Geom Dedicata 13:87–99

    Article  Google Scholar 

  • Diudea MV (1997) Cluj matrix invariants. J Chem Inf Comput Sci 37:300–305

    Article  CAS  Google Scholar 

  • Diudea MV (2002) Graphenes from 4-Valent tori. Bull Chem Soc Jpn 75:487–492

    Article  CAS  Google Scholar 

  • Diudea MV (2006) Omega polynomial. Carpath J Math 22:43–47

    Google Scholar 

  • Diudea MV (2009) Cluj polynomials. J Math Chem 45:295–308

    Article  CAS  Google Scholar 

  • Diudea MV (2010a) Nanomolecules and nanostructures – polynomials and indices. In: MCM Ser. 10. University of Kragujevac, Kragujevac

    Google Scholar 

  • Diudea MV (2010b) Counting polynomials and related indices by edge cutting procedures. MATCH Commun Math Comput Chem 64(3):569–590

    Google Scholar 

  • Diudea MV, Klavžar S (2010) Omega polynomial revisited. Acta Chem Sloven 57:565–570

    CAS  Google Scholar 

  • Diudea MV, Parv B, Ursu O (2003) TORUS software. Babes-Bolyai University, Cluj

    Google Scholar 

  • Diudea MV, Cigher S, John PE (2008) Omega and related counting polynomials. MATCH Commun Math Comput Chem 60:237–250

    Google Scholar 

  • Djoković DŽ (1973) Distance preserving subgraphs of hypercubes. J Combin Theory Ser B 14:263–267

    Article  Google Scholar 

  • Euler L (1752–1753) Elementa doctrinae solidorum. Novi Comm Acad Sci Imp Petrop 4:109–160

    Google Scholar 

  • Gutman I (1994) A formula for the wiener number of trees and its extension to graphs containing cycles. Graph Theory Notes NY 27:9–15

    Google Scholar 

  • Gutman I, Klavžar S (1995) An algorithm for the calculation of the szeged index of benzenoid hydrocarbons. J Chem Inf Comput Sci 35:1011–1014

    Article  CAS  Google Scholar 

  • Harary F (1969) Graph theory. Addison-Wesley, Reading

    Google Scholar 

  • Hillis WD (1982) New computer architectures and their relationship to physics or why computer science is no good. Int J Theor Phys 21(3/4):255–262

    Article  Google Scholar 

  • John PE, Vizitiu AE, Cigher S, Diudea MV (2007) CI Index in tubular nanostructures. MATCH Commun Math Comput Chem 57:479–484

    Google Scholar 

  • Khalifeh MH, Yousefi-Azari H, Ashrafi AR (2008) A matrix method for computing szeged and vertex PI indices of join and composition of graphs. Linear Algebra Appl 429:2702–2709

    Article  Google Scholar 

  • Klavžar S (2008a) Abrid’s eye view of the cut method and a survey of its applications in chemical graph theory. MATCH Commun Math Comput Chem 60:255–274

    Google Scholar 

  • Klavžar S (2008b) Some comments on co graphs and CI index. MATCH Commun Math Comput Chem 59:217–222

    Google Scholar 

  • Lijnen E, Ceulemans A (2005) The symmetry of the Dyck graph: group structure and molecular realization (Chap. 14). In: Diudea MV (ed) Nanostructures: novel architecture. Nova, New York, pp 299–309

    Google Scholar 

  • Mansour T, Schork M (2009) The vertex PI index and szeged index of bridge graphs. Discr Appl Math 157:1600–1606

    Article  Google Scholar 

  • McMullen P, Schulte P (2002) Abstract Regular Polytopes, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Nagy CsL, Diudea MV (2009) Nano studio software. “Babes-Bolyai” University, Cluj

    Google Scholar 

  • Parvan-Moldovan A, Diudea MV (2015) Hyper-tubes of hyper-cubes. Iran J Math Chem 6:163–168

    Google Scholar 

  • Pirvan-Moldovan A, Diudea MV (2016) Euler characteristic of polyhedral graphs. Croat Chem Acta (accepted)

    Google Scholar 

  • Schläfli L (1901) Theorie der vielfachen Kontinuität Zürcher und Furrer, Zürich (Reprinted in: Ludwig Schläfli, 1814–1895, Gesammelte Mathematische Abhandlungen, Band 1, 167–387, VerlagBirkhäuser, Basel, 1950)

    Google Scholar 

  • Schulte E (1985) Regular incidence-polytopes with euclidean or toroidal faces and vertex-figures. J Combin Theory Ser A 40(2):305–330

    Article  Google Scholar 

  • Schulte E (2014) Polyhedra, complexes, nets and symmetry. Acta Cryst A70:203–216

    Google Scholar 

  • Szymanski TH (1989) On the permutation capability of a circuit-switched hypercube. In: Proceedings of the international conference on parallel processing 1, IEEE Computer Society Press, Silver Spring, MD, pp 103–110

    Google Scholar 

  • Winkler PM (1984) Isometric embedding in products of complete graphs. Discret Appl Math 8:209–212

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Diudea, M.V. (2018). Spongy Hypercubes. In: Multi-shell Polyhedral Clusters. Carbon Materials: Chemistry and Physics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-64123-2_11

Download citation

Publish with us

Policies and ethics