Skip to main content

Chiral Multi-tori

  • Chapter
  • First Online:
Multi-shell Polyhedral Clusters

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 10))

  • 566 Accesses

Abstract

Chirality is one of the basic characteristics of biological structures; chirality is a symmetry property. Multi-tori are complex structures consisting of more than one torus, embedded in negatively curved surfaces. Design of multi-tori may be achieved by operations on maps. The “monomers” used to design the chiral multi-tori discussed in this chapter are snubs of Platonic solids. A snub polyhedron s(P) is achieved by dualizing the p 5(P) transform: s(P) = d(p 5(P)); since p 5-operation is prochiral, all the consecutive structures will be chiral; high genus structures of rank k = 3 were thus obtained. The genus and rank (or space dimension) of a structure are parameters of complexity.

Topological symmetry of the structures herein discussed was evaluated by ring signature and centrality index and confirmed by symmetry calculation using the adjacency matrix permutations. C60-related chiral tori were also designed and their symmetry evaluated. An atlas section illustrates the discussed chiral multi-tori.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babić D, Klein DJ, Schmalz TG (2001) Curvature matching and strain relief in bucky-tori: usage of sp3-hybridization and nonhexagonal rings. J Mol Graph Model 19:223–231

    Google Scholar 

  • Barborini E, Piseri P, Milani P, Benedek G, Ducati C, Robertson J (2002) Negatively curved spongy carbon. Appl Phys Lett 81:3359–3361

    Article  CAS  Google Scholar 

  • Benedek G, Vahedi-Tafreshi H, Barborini E, Piseri P, Milani P, Ducati C, Robertson J (2003) The structure of negatively curved spongy carbon. Diam Relat Mater 12:768–773

    Article  CAS  Google Scholar 

  • Blatov VA, O’Keeffe M, Proserpio DM (2010) Vertex-, face-, point-, Schläfli-, and Delaney-symbols in nets, polyhedra and tilings: recommended terminology. Cryst Eng Comm 12:44–48

    Article  CAS  Google Scholar 

  • Buckley F (1979) Self-centered graph with given radius. Congr Numer 23:211–215

    Google Scholar 

  • Buckley F (1989) Self-centered graphs. Ann NY Acad Sci 576:71–78

    Article  Google Scholar 

  • Diudea MV (1994) Layer matrices in molecular graphs. J Chem Inf Comput Sci 34:1064–1071

    Article  CAS  Google Scholar 

  • Diudea MV, Nagy CL (2007) Periodic nanostructures. Springer, Dordrecht

    Book  Google Scholar 

  • Diudea MV, Petitjean M (2008) Symmetry in multi-tori. Symmetry Cult Sci 19(4):285–305

    Google Scholar 

  • Diudea MV, Petitjean M (2016) Chiral multitori as snub derivatives. Rev Roum Chim 61(4–5):329–337

    Google Scholar 

  • Diudea MV, Rosenfeld VR (2017) The truncation of a cage graph. J Math Chem 55(4):1014–1020. doi:10.1007/s10910-016-0716-6

    Article  CAS  Google Scholar 

  • Diudea MV, Ursu O (2003) Layer matrices and distance property descriptors. Indian J Chem A 42(6):1283–1294

    Google Scholar 

  • Euler L (1752–1753) Elementa doctrinae solidorum-Demonstratio nonnullarum insignium proprietatum, quibus solida hedris planis inclusa sunt praedita. Novi Comment Acad Sc Imp Petropol 4:109–160

    Google Scholar 

  • Harary F (1969) Graph theory. Addison-Wesley, Reading

    Book  Google Scholar 

  • Hargittai M, Hargittai I (2010) Symmetry through the eyes of a chemist. Springer, Dordrecht

    Google Scholar 

  • Higuchi Y (2001) Combinatorial curvature for planar graphs. J Graph Theory 38:220–229

    Article  Google Scholar 

  • Janakiraman TN, Ramanujan J (1992) On self-centered graphs. Math Soc 7:83–92

    Google Scholar 

  • Kelvin L (1904) Baltimore lectures on molecular dynamics and the wave theory of light, Appendix H, Sect. 22, footnote p. 619. C.J. Clay and Sons, Cambridge University Press Warehouse, London

    Google Scholar 

  • Klein DJ (2002) Topo-combinatoric categorization of quasi-local graphitic defects. Phys Chem Chem Phys 4:2099–2110

    Article  CAS  Google Scholar 

  • Klein DJ, Liu X (1994) Elemental carbon isomerism. Int J Quantum Chem S28:501–523

    Article  Google Scholar 

  • Lenosky T, Gonze X, Teter M, Elser V (1992) Energetics of negatively curved graphitic carbon. Nature 355:333–335

    Article  CAS  Google Scholar 

  • Lijnen E, Ceulemans A (2005) The symmetry of Dyck graph: group structure and molecular realization. J Chem Inf Model 45(6):1719–1726

    Article  CAS  Google Scholar 

  • Mackay AL, Terrones H (1991) Diamond from graphite. Nature 352:762–762

    Article  Google Scholar 

  • Meier WM, Olson DH (1992) Atlas of zeolite structure types, 3rd edn. Butterworth-Heineman, London

    Google Scholar 

  • Nagy CL, Diudea MV (2009) Nano studio software. Babes-Bolyai University, Cluj

    Google Scholar 

  • Nagy CL, Diudea MV (2017) Ring signature index. MATCH Commun Math Comput Chem 77(2):479–492

    Google Scholar 

  • Nazeer W, Kang SM, Nazeer S, Munir M, Kousar J, Sehar A, Kwun YC (2016) On center, periphery and average eccentricity for the convex polytopes. Symmetry 8:145–168

    Article  Google Scholar 

  • Negami S, Xu GH (1986) Locally geodesic cycles in 2-self-centered graphs. Discret Math 58:263–268

    Article  Google Scholar 

  • Petitjean M (2016) http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.html

  • Schulte E (1985) Regular incidence-polytopes with Euclidean or toroidal faces and vertex-figures. J Combin Theory A 40(2):305–330

    Article  Google Scholar 

  • Schulte E (2014) Polyhedra, complexes, nets and symmetry. Acta Crystallographica A 70:203–216

    Article  CAS  Google Scholar 

  • Terrones H, Mackay AL (1997) From C60 to negatively curved graphite. Prog Crystal Growth Charact 34:25–36

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Chapter 10 Atlas: Chiral Multi-tori

Chapter 10 Atlas: Chiral Multi-tori

10.1.1 Dodecahedron Related Structures

figure a

s(D).60

s(D)@s(D)7S.120

op(ca(D)).200

figure e

s(D).60

Op(Ca(D)).200

C280,S

figure i

op(ca(D)).200

C280,S

t(C280).840_cyclic cover

figure m

C280,R

P5.1(C280,R).1240

s(C280R).840

figure q

Op(Ca(D)).200

d(m(C280)).400

C280,S

figure u

s(D).60_5

m(C280).420

C280,S

figure y

s(D).60_5

op(ca(D)).200

C280,S

figure ac

s(D).60_5

Op(Ca(D)).200

d(p 4(C280)820).840

figure ag

op(ca(D)).200

C280,S

p 4(C280).820

10.2 C 60 related structures

figure ak

s(C60).180

s(C60)@s(C60)7R.360

A5; Classes 6: |6{60}|

op(ca(C60)).600

figure ao

s(C60).180

op(ca(C60)).600

C840,7R

figure as

op(ca(C60)).600

d(m(C840)).1200_3

C840,7R_3

figure aw

op(ca(C60)).600_5

m(C840).1260_3

C840,7R_3

figure ba

s(C60).180

op(ca(C60)).600

C840,R_5

figure be

op(ca(C60)).600

C840,R_5

t(C840).2520_cyclic cover

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Diudea, M.V. (2018). Chiral Multi-tori. In: Multi-shell Polyhedral Clusters. Carbon Materials: Chemistry and Physics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-64123-2_10

Download citation

Publish with us

Policies and ethics