Skip to main content

Basic Chemical Graph Theory

  • Chapter
  • First Online:
Multi-shell Polyhedral Clusters

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 10))

Abstract

Graph Theory applied in Chemistry is called Chemical Graph Theory. This interdisciplinary science takes problems (like isomer enumeration, structure elucidation, etc.) from Chemistry and solve them by Mathematics (using tools from Graph Theory, Set Theory or Combinatorics), thus influencing both Chemistry and Mathematics. This chapter introduces to basic definitions in Graph Theory: graph, walk, path, circuit, planar graph, graph invariant, vertex degree, chemical graph, etc. Then topological matrices are introduced: adjacency, distance, detour, combinatorial matrices, Wiener and Cluj matrices, walk matrix operator (combining three square matrices), reciprocal distance, and layer/shell matrices, on which the centrality indices are defined. Some info about topological symmetry is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amić D, Trinajstić N (1995) On the detour matrix. Croat Chem Acta 68:53–62

    Google Scholar 

  • Balasubramanian K (1994) Computer generation of automorphism graphs of weighted graphs. J Chem Inf Comput Sci 34:1146–1150

    Article  CAS  Google Scholar 

  • Balasubramanian K (1995a) Computer generation of nuclear equivalence classes based on the three-dimensional molecular structure. J Chem Inf Comput Sci 35:243–250

    Article  CAS  Google Scholar 

  • Balasubramanian K (1995b) Computational strategies for the generation of equivalence classes of Hadamard matrices. J Chem Inf Comput Sci 35:581–589

    Article  CAS  Google Scholar 

  • Balasubramanian K (1995c) Computer perception of molecular symmetry. J Chem Inf Comput Sci 35:761–770

    Article  CAS  Google Scholar 

  • Bonchev D, Mekenyan O, Balaban AT (1989) Iterative procedure for the generalized graph center in polycyclic graphs. J Chem Inf Comput Sci 29:91–97

    Article  CAS  Google Scholar 

  • Ciubotariu D (1987) Structură-reactivitate în clasa derivaţilor acidului carbonic. PhD Thesis, Timisoara, Romania

    Google Scholar 

  • Ciubotariu D, Medeleanu M, Vlaia V, Olariu T, Ciubotariu C, Dragos D, Seiman C (2004) Molecular van der Waals space and topological indices from the distance matrix. Molecules 9:1053–1078

    Article  CAS  Google Scholar 

  • Crippen GM (1977) A novel approach to calculation of conformation: distance geometry. J Comput Phys 24:96–107

    Article  CAS  Google Scholar 

  • Diudea MV (1994) Layer matrices in molecular graphs. J Chem Inf Comput Sci 34:1064–1071

    Article  CAS  Google Scholar 

  • Diudea MV (1996) Walk numbers eWM: Wiener-type numbers of higher rank. J Chem Inf Comput Sci 36:535–540

    Article  CAS  Google Scholar 

  • Diudea MV (1997a) Cluj matrix invariants. J Chem Inf Comput Sci 37:300–305

    Article  CAS  Google Scholar 

  • Diudea MV (1997b) Cluj matrix, CJu: source of various graph descriptors. MATCH Commun Math Comput Chem 35:169–183

    CAS  Google Scholar 

  • Diudea MV (1997c) Indices of reciprocal property or Harary indices. J Chem Inf Comput Sci 37:292–299

    Article  CAS  Google Scholar 

  • Diudea MV (1999) Valencies of property. Croat Chem Acta 72:835–851

    CAS  Google Scholar 

  • Diudea MV (2010) Nanomolecules and nanostructures—polynomials and indices, MCM, No. 10. University Kragujevac, Serbia

    Google Scholar 

  • Diudea MV, Gutman I (1998) Wiener-type topological indices. Croat Chem Acta 71:21–51

    CAS  Google Scholar 

  • Diudea MV, Randić M (1997) Matrix operator, W(M1,M2,M3) and Schultz-type numbers. J Chem Inf Comput Sci 37:1095–1100

    Article  CAS  Google Scholar 

  • Diudea MV, Ursu O (2003) Layer matrices and distance property descriptors. Indian J Chem 42A:1283–1294

    CAS  Google Scholar 

  • Diudea MV, Topan MI, Graovac A (1994) Layer matrices of walk degrees. J Chem Inf Comput Sci 34:1071–1078

    Google Scholar 

  • Diudea MV, Parv B, Gutman I (1997a) Detour-Cluj matrix and derived invariants. J Chem Inf Comput Sci 37:1101–1108

    Article  CAS  Google Scholar 

  • Diudea M, Parv B, Topan MI (1997b) Derived Szeged and Cluj indices. J Serb Chem Soc 62:267–276

    CAS  Google Scholar 

  • Diudea MV, Katona G, Lukovits I, Trinajstić N (1998) Detour and Cluj-detour indices. Croat Chem Acta 71:459–471

    CAS  Google Scholar 

  • Diudea MV, Gutman I, Jäntschi L (2002) Molecular topology. NOVA, New York

    Google Scholar 

  • Diudea MV, Florescu MS, Khadikar PV (2006) Molecular topology and its applications. EFICON, Bucharest

    Google Scholar 

  • Dobrynin AA (1993) Degeneracy of some matrix invariant and derived topological indices. J Math Chem 14:175–184

    Article  Google Scholar 

  • Dobrynin AA, Kochetova AA (1994) Degree distance of a graph: a degree analogue of the Wiener index. J Chem Inf Comput Sci 34:1082–1086

    Article  CAS  Google Scholar 

  • Estrada E, Rodriguez L (1997) Matrix algebric manipulation of molecular graphs, Harary- and MTI-like molecular descriptors. MATCH Commun Math Comput Chem 35:157–167

    CAS  Google Scholar 

  • Estrada E, Rodriguez L, Gutierrez A (1997) Matrix algebric manipulation of molecular graphs, distance and vertex-adjacency matrices. MATCH Commun Math Chem 35:145–156

    CAS  Google Scholar 

  • Euler L (1752–1753) Elementa doctrinae solidorum. Novi Comm Acad Scient Imp Petrop 4:109–160

    Google Scholar 

  • Graovac A, Babić D (1990) The evaluation of quantum chemical indices by the method of moments. Int J Quantum Chem Quantum Chem Symp 24:251–262

    Article  CAS  Google Scholar 

  • Gutman I (1994) A formula for the Wiener number of trees and its extension to graphs containing cycles. Graph Theory Notes NY 27:9–15

    Google Scholar 

  • Gutman I, Polansky OE (1986) Mathematical concepts in organic chemistry. Springer, Berlin, pp 108–116

    Book  Google Scholar 

  • Halberstam FY, Quintas LV (1982) Distance and path degree sequences for cubic graphs. Pace University, New York. A note on table of distance and path degree sequences for cubic graphs, Pace University, New York

    Google Scholar 

  • Harary F (1969) Graph theory. Addison-Wesley, Reading

    Book  Google Scholar 

  • Hargittai M, Hargittai I (2010) Symmetry through the eyes of a chemist. Springer, Dordrecht

    Google Scholar 

  • Horn RA, Johnson CR (1985) Matrix analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hungerford TW (1974) Algebra. Graduate texts in mathematics, vol 73. Springer, New York (Reprint of the original 1980)

    Google Scholar 

  • Ionescu T (1973) Graphs-applications (in Romanian), Ed. Ped., Bucharest

    Google Scholar 

  • Ivanciuc O, Balaban TS, Balaban AT (1993) Reciprocal distance matrix, related local vertex invariants and topological indices. J Math Chem 12:309–318

    Article  CAS  Google Scholar 

  • Janežič D, Miličević A, Nikolić S, Trinajstić N (2007) Graph theoretical matrices in chemistry. Mathematical chemistry monographs. University Kragujevac, Kragujevac

    Google Scholar 

  • Klein DJ, Lukovits I, Gutman I (1995) On the definition of the hyper-Wiener index for cycle-containing structures. J Chem Inf Comput Sci 35:50–52

    Article  CAS  Google Scholar 

  • Kuratowski K (1930) Sur le Problème des Courbes Gauches en Topologie. Fund Math 15:271–283

    Article  Google Scholar 

  • Lukovits I (1996) The detour index. Croat Chem Acta 69:873–882

    CAS  Google Scholar 

  • Mirman R (1999) Point groups, space groups, crystals, molecules. World Scientific, River Edge

    Book  Google Scholar 

  • Petitjean M (2007) A definition of symmetry. Symmetry Cult Sci 18:99–119

    Google Scholar 

  • Plavšić D, Nikolić S, Trinajstić N, Mihalić Z (1993) On the Harary index for the characterization of chemical graphs. J Math Chem 12:235–250

    Article  Google Scholar 

  • Randić M (1991) Generalized molecular descriptors. J Math Chem 7:155–168

    Article  Google Scholar 

  • Randić M (1993) Novel molecular description for structure-property studies. Chem Phys Lett 211:478–483

    Article  Google Scholar 

  • Randić M (1995) Restricted random walks on graphs. Theor Chim Acta 92:97–106

    Article  Google Scholar 

  • Randić M, Guo X, Oxley T, Krishnapriyan H (1993) Wiener matrix: source of novel graph invariants. J Chem Inf Comput Sci 33:700–716

    Google Scholar 

  • Randić M, Guo X, Oxley T, Krishnapriyan H, Naylor L (1994) Wiener matrix invariants. J Chem Inf Comput Sci 34:361–367

    Article  Google Scholar 

  • Razinger M, Balasubramanian K, Munk ME (1993) Graph automorphism perception algorithms in computer-enhanced structure elucidation. J Chem Inf Comput Sci 33:197–201

    Article  CAS  Google Scholar 

  • Skorobogatov AV, Dobrynin AA (1988) Metric analysis of graphs. MATCH Commun Math Comput Chem 23:105–151

    CAS  Google Scholar 

  • Sylvester JJ (1874) On an application of the new atomic theory to the graphical representation of the invariants and covariants of binary quantics—with three appendices. Am J Math 1:64–90

    Article  Google Scholar 

  • Tratch SS, Stankevich MI, Zefirov NS (1990) Combinatorial models and algorithms in chemistry. The expanded Wiener number—a novel topological index. J Comput Chem 11:899–908

    Article  CAS  Google Scholar 

  • Trinajstić N (1983) Chemical graph theory. CRC Press, Boca Raton

    Google Scholar 

  • Ursu O, Diudea MV (2005) TOPOCLUJ software program. Babes-Bolyai University, Cluj

    Google Scholar 

  • Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69:17–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Diudea, M.V. (2018). Basic Chemical Graph Theory. In: Multi-shell Polyhedral Clusters. Carbon Materials: Chemistry and Physics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-64123-2_1

Download citation

Publish with us

Policies and ethics