Skip to main content

Architectural Modeling and Analysis for Safety Engineering

  • Conference paper
  • First Online:
Model-Based Safety and Assessment (IMBSA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10437))

Included in the following conference series:

Abstract

Architecture description languages such as AADL allow systems engineers to specify the structure of system architectures and perform several analyses over them, including schedulability, resource analysis, and information flow. In addition, they permit system-level requirements to be specified and analyzed early in the development process of airborne and ground-based systems. These tools can also be used to perform safety analysis based on the system architecture and initial functional decomposition.

Using AADL-based system architecture modeling and analysis tools as an exemplar, we extend existing analysis methods to support system safety objectives of ARP4754A and ARP4761. This includes extensions to existing modeling languages to better describe failure conditions, interactions, and mitigations, and improvements to compositional reasoning approaches focused on the specific needs of system safety analysis. We develop example systems based on the Wheel Braking System in SAE AIR6110 to evaluate the effectiveness and practicality of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AADL: Predictable Model-Based Engineering

    Google Scholar 

  2. AIR 6110: Contiguous Aircraft/System Development Process Example (2011)

    Google Scholar 

  3. Backes, J., Cofer, D., Miller, S., Whalen, M.W.: Requirements analysis of a quad-redundant flight control system. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 82–96. Springer, Cham (2015). doi:10.1007/978-3-319-17524-9_7

    Google Scholar 

  4. Bittner, B., Bozzano, M., Cavada, R., Cimatti, A., Gario, M., Griggio, A., Mattarei, C., Micheli, A., Zampedri, G.: The xSAP Safety Analysis Platform. In: Proceedings of 22nd International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2016), Held as Part of the European Joint Conferences on Theory and Practice of Software (ETAPS 2016), Eindhoven, The Netherlands, 2–8 April 2016, pp. 533–539 (2016)

    Google Scholar 

  5. Bozzano, M., Cimatti, A., Pires, A.F., Jones, D., Kimberly, G., Petri, T., Robinson, R., Tonetta, S.: Formal design and safety analysis of AIR6110 wheel brake system. In: Proceedings of 27th International Conference on Computer Aided Verification (CAV 2015), Part I, San Francisco, CA, USA, 18–24 July 2015, pp. 518–535 (2015)

    Google Scholar 

  6. Chen, D., Mahmud, N., Walker, M., Feng, L., Lnn, H., Papadopoulos, Y.: Systems modeling with EAST-ADL for fault tree analysis through HiP-HOPS*. IFAC Proc. Vol. 46(22), 91–96 (2013)

    Article  Google Scholar 

  7. Cimatti, A., Tonetta, S.: Contracts-refinement proof system for component-based embedded system. Sci. Comput. Program. 97, 333–348 (2015)

    Article  Google Scholar 

  8. Cofer, D., Gacek, A., Miller, S., Whalen, M.W., LaValley, B., Sha, L.: Compositional verification of architectural models. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 126–140. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28891-3_13

    Chapter  Google Scholar 

  9. Delange, J., Feiler, P., Gluch, D.P., Hudak, J.: AADL Fault Modeling, Analysis Within an ARP4761 Safety Assessment. Technical report CMU/SEI-2014-TR-020, Software Engineering Institute

    Google Scholar 

  10. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML. Morgan Kaufman Publisher, San Francisco (2008)

    Google Scholar 

  11. Gudemann, M., Ortmeier, F.: A framework for qualitative and quantitative formal model-based safety analysis. In: Proceedings of the 2010 IEEE 12th International Symposium on High-Assurance Systems Engineering, HASE 2010, pp. 132–141. IEEE Computer Society, Washington, D.C. (2010)

    Google Scholar 

  12. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow programming language lustre. Proc. IEEE 79(9), 1305–1320 (1991)

    Article  Google Scholar 

  13. Hnig, P., Lunde, R., Holzapfel, F.: Model based safety analysis with smartIflow. Information 8(1), 7 (2017)

    Article  Google Scholar 

  14. Joshi, A., Heimdahl, M.P.E.: Model-based safety analysis of simulink models using SCADE design verifier. In: Winther, R., Gran, B.A., Dahll, G. (eds.) SAFECOMP 2005. LNCS, vol. 3688, pp. 122–135. Springer, Heidelberg (2005). doi:10.1007/11563228_10

    Chapter  Google Scholar 

  15. Joshi, A., Heimdahl, M.P.: Behavioral fault modeling for model-based safety analysis. In: Proceedings of the 10th IEEE High Assurance Systems Engineering Symposium (HASE) (2007)

    Google Scholar 

  16. Joshi, A., Miller, S.P., Whalen, M., Heimdahl, M.P.: A proposal for model-based safety analysis. In: Proceedings of 24th Digital Avionics Systems Conference (Awarded Best Paper of Track) (2005)

    Google Scholar 

  17. Joshi, A., Whalen, M., Heimdahl, M.P.: Automated Safety Analysis Draft Final Report. Report for NASA Contract NCC-01001 (2005)

    Google Scholar 

  18. Larson, B., Hatcliff, J., Fowler, K., Delange, J.: Illustrating the AADL error modeling annex (v.2) using a simple safety-critical medical device. In: Proceedings of the 2013 ACM SIGAda Annual Conference on High Integrity Language Technology (HILT 2013), pp. 65–84. ACM, New York (2013)

    Google Scholar 

  19. Lisagor, O., Kelly, T., Niu, R.: Model-based safety assessment: Review of the discipline and its challenges. In: Proceedings of 2011 9th International Conference on Reliability, Maintainability and Safety, pp. 625–632 (2011)

    Google Scholar 

  20. MathWorks: The MathWorks Inc., Simulink Product Web Site (2004). http://www.mathworks.com/products/simulink

  21. Murugesan, A., Whalen, M.W., Rayadurgam, S., Heimdahl, M.P.: Compositional verification of a medical device system. In: ACM International Conference on High Integrity Language Technology (HILT 2013), ACM (2013)

    Google Scholar 

  22. Pajic, M., Mangharam, R., Sokolsky, O., Arney, D., Goldman, J., Lee, I.: Model-driven safety analysis of closed-loop medical systems. IEEE Trans. Industr. Inf. pp. 1–12 (2012)

    Google Scholar 

  23. Prosvirnova, T., Batteux, M., Brameret, P.-A., Cherfi, A., Friedlhuber, T., Roussel, J.-M., Rauzy, A.: The AltaRica 3.0 project for model-based safety assessment. IFAC Proc. Volum. 46(22), 127–132 (2013)

    Article  Google Scholar 

  24. SAE ARP 4761: Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment (1996)

    Google Scholar 

  25. SAE AS 5506B–3: Aadl annex volume 1 (2015)

    Google Scholar 

  26. Sokolsky, O., Lee, I., Clarke, D.: Process-algebraic interpretation of AADL models. In: Proceedings of 14th Ada-Europe International Conference on Reliable Software Technologies (Ada-Europe 2009), Brest, France, 8–12 June 2009, pp. 222–236 (2009)

    Google Scholar 

Download references

Acknowledgements

This research was funded by NASA AMASE NNL16AB07T and University of Minnesota College of Science and Engineering Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Stewart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Stewart, D., Whalen, M.W., Cofer, D., Heimdahl, M.P.E. (2017). Architectural Modeling and Analysis for Safety Engineering. In: Bozzano, M., Papadopoulos, Y. (eds) Model-Based Safety and Assessment. IMBSA 2017. Lecture Notes in Computer Science(), vol 10437. Springer, Cham. https://doi.org/10.1007/978-3-319-64119-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64119-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64118-8

  • Online ISBN: 978-3-319-64119-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics