Skip to main content

Cryptococcus and Cryptococcosis

  • Chapter
  • First Online:
Current Progress in Medical Mycology

Abstract

Cryptococcosis is a fungal disease caused by Cryptococcus neoformans and C. gattii. Lung disease and meningocephalitis are the most common clinical outcomes of cryptococcosis, especially in immunosuppressed patients. Current estimates suggest 278,000 cases of human cryptococcal meningitis annually. This syndrome is fatal if untreated. Treatment of cryptococcosis is expensive and poorly effective. This complex scenario makes clear the need for innovation in the field of Cryptococcus and cryptococcosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kwon-Chung KJ et al (2014) Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb Perspect Med 4(7):a019760

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kidd SE et al (2004) A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc Natl Acad Sci U S A 101(49):17258–17263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dromer F, Casadevall A, Perfect JR, Sorrell T (2011) Cryptococcus neoformans: latency and disease. In: Heitman J, Kozel TR, Kwon-Chung KJ, Perfect JR, Casadevall A (eds) Cryptococcus: from human pathogen to model yeast. American Society for Microbiology, USA, pp 431–439

    Chapter  Google Scholar 

  4. Park BJ et al (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23(4):525–530

    Article  PubMed  Google Scholar 

  5. Denning DW (2016) Minimizing fungal disease deaths will allow the UNAIDS target of reducing annual AIDS deaths below 500 000 by 2020 to be realized. Philos Trans R Soc Lond Ser B Biol Sci 371(1709):1–10

    Google Scholar 

  6. Harris J, Lockhart S, Chiller T (2012) Cryptococcus gattii: where do we go from here? Med Mycol 50(2):113–129

    Article  PubMed  Google Scholar 

  7. Rodrigues ML (2016) Funding and innovation in diseases of neglected populations: the paradox of cryptococcal meningitis. PLoS Negl Trop Dis 10(3):e0004429

    Article  PubMed  PubMed Central  Google Scholar 

  8. Srikanta D, Santiago-Tirado FH, Doering TL (2014) Cryptococcus neoformans: historical curiosity to modern pathogen. Yeast 31(2):47–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maziarz EK, Perfect JR (2016) Cryptococcosis. Infect Dis Clin N Am 30(1):179–206

    Article  Google Scholar 

  10. Chen M et al (2016) Cryptococcosis and tuberculosis co-infection in mainland China. Emerg Microbes Infect 5(9):e98

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sorrell TC, Chen SCA, Phillips P, Marr KA (2011) Clinical perspectives on cryptococcus neoformans and Cryptococcus gattii: implications for diagnosis and management. In: Heitman J, Kozel TR, Kwon-Chung KJ, Perfect JR, Casadevall A (eds) Cryptococcus: from human pathogen to model yeast. American Society for Microbiology, USA, pp 595–606

    Chapter  Google Scholar 

  12. Vallabhaneni S et al (2016) The global burden of fungal diseases. Infect Dis Clin N Am 30(1):1–11

    Article  Google Scholar 

  13. Du L et al (2015) Systemic review of published reports on primary cutaneous cryptococcosis in immunocompetent patients. Mycopathologia 180(1–2):19–25

    Article  CAS  PubMed  Google Scholar 

  14. Haddad N et al (2015) Pulmonary cryptococcoma: a rare and challenging diagnosis in immunocompetent patients. Autops Case Rep 5(2):35–40

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen SC, Meyer W, Sorrell TC (2014) Cryptococcus gattii infections. Clin Microbiol Rev 27(4):980–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Santos WRAD et al (2008) Primary endemic Cryptococcosis gattii by molecular type VGII in the state of Pará, Brazil. Mem Inst Oswaldo Cruz 103:813–818

    Article  PubMed  Google Scholar 

  17. Galanis E et al (2009) Clinical presentation, diagnosis and management of Cryptococcus gattii cases: Lessons learned from British Columbia. Can J Infect Dis Med Microbiol 20(1):23–28

    PubMed  PubMed Central  Google Scholar 

  18. Gullo FP et al (2013) Cryptococcosis: epidemiology, fungal resistance, and new alternatives for treatment. Eur J Clin Microbiol Infect Dis 32(11):1377–1391

    Article  CAS  PubMed  Google Scholar 

  19. Lin X, Heitman J (2006) The biology of the Cryptococcus neoformans species complex. Annu Rev Microbiol 60:69–105

    Article  CAS  PubMed  Google Scholar 

  20. Brito-Santos F et al (2015) Environmental isolation of Cryptococcus gattii VGII from indoor dust from typical wooden houses in the deep Amazonas of the Rio Negro basin. PLoS One 10(2):e0115866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Takahara DT et al (2013) First report on Cryptococcus neoformans in pigeon excreta from public and residential locations in the metropolitan area of Cuiaba, State of Mato Grosso, Brazil. Rev Inst Med Trop Sao Paulo 55(6):371–376

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jesus MSD et al (2012) Cryptococcus neoformans carried by Odontomachus bauri ants. Mem Inst Oswaldo Cruz 107:466–469

    Article  PubMed  Google Scholar 

  23. Cattana ME et al (2014) Native trees of the Northeast Argentine: natural hosts of the Cryptococcus neoformans-Cryptococcus gattii species complex. Rev Iberoam Micol 31(3):188–192

    Article  PubMed  Google Scholar 

  24. Springer DJ, Chaturvedi V (2010) Projecting global occurrence of Cryptococcus gattii. Emerg Infect Dis 16(1):14–20

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cogliati M (2013) Global molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii: an atlas of the molecular types. Scientifica 2013:23

    Article  CAS  Google Scholar 

  26. Fraser JA et al (2005) Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437(7063):1360–1364

    Article  CAS  PubMed  Google Scholar 

  27. Hagen F et al (2013) Ancient dispersal of the human fungal pathogen Cryptococcus gattii from the Amazon rainforest. PLoS One 8(8):e71148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Souto AC et al (2016) Population genetic analysis reveals a high genetic diversity in the Brazilian Cryptococcus gattii VGII population and shifts the global origin from the Amazon rainforest to the semi-arid desert in the northeast of Brazil. PLoS Negl Trop Dis 10(8):e0004885

    Article  PubMed  PubMed Central  Google Scholar 

  29. Firacative C et al (2016) MLST and whole-genome-based population analysis of Cryptococcus gattii VGIII links clinical, veterinary and environmental strains, and reveals divergent serotype specific sub-populations and distant ancestors. PLoS Negl Trop Dis 10(8):e0004861

    Article  PubMed  PubMed Central  Google Scholar 

  30. Baker RD (1976) The primary pulmonary lymph node complex of crytptococcosis. Am J Clin Pathol 65(1):83–92

    Article  CAS  PubMed  Google Scholar 

  31. Goldman DL et al (2001) Serologic evidence for Cryptococcus neoformans infection in early childhood. Pediatrics 107(5):E66

    Article  CAS  PubMed  Google Scholar 

  32. Garcia-Hermoso D, Janbon G, Dromer F (1999) Epidemiological evidence for dormant Cryptococcus neoformans infection. J Clin Microbiol 37(10):3204–3209

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen S et al (2000) Epidemiology and host- and variety-dependent characteristics of infection due to Cryptococcus neoformans in Australia and New Zealand. Australasian Cryptococcal Study Group. Clin Infect Dis 31(2):499–508

    Article  CAS  PubMed  Google Scholar 

  34. Mitchell DH et al (1995) Cryptococcal disease of the CNS in immunocompetent hosts: influence of cryptococcal variety on clinical manifestations and outcome. Clin Infect Dis 20(3):611–616

    Article  CAS  PubMed  Google Scholar 

  35. Speed B, Dunt D (1995) Clinical and host differences between infections with the two varieties of Cryptococcus neoformans. Clin Infect Dis 21(1):28–34, discussion 35–36

    Google Scholar 

  36. Chayakulkeeree M, Perfect JR (2006) Cryptococcosis. Infect Dis Clin N Am 20(3):507–544, v–vi

    Google Scholar 

  37. Chang WC et al (2006) Pulmonary cryptococcosis: comparison of clinical and radiographic characteristics in immunocompetent and immunocompromised patients. Chest 129(2):333–340

    Article  PubMed  Google Scholar 

  38. Shirley RM, Baddley JW (2009) Cryptococcal lung disease. Curr Opin Pulm Med 15(3):254–260

    Article  PubMed  Google Scholar 

  39. Nadrous HF et al (2003) Pulmonary cryptococcosis in nonimmunocompromised patients. Chest 124(6):2143–2147

    Article  PubMed  Google Scholar 

  40. Phillips P et al (2015) Longitudinal clinical findings and outcome among patients with Cryptococcus gattii infection in British Columbia. Clin Infect Dis 60(9):1368–1376

    PubMed  Google Scholar 

  41. Murray RJ et al (1988) Recovery from cryptococcemia and the adult respiratory distress syndrome in the acquired immunodeficiency syndrome. Chest 93(6):1304–1306

    Article  CAS  PubMed  Google Scholar 

  42. Brizendine KD, Baddley JW, Pappas PG (2011) Pulmonary cryptococcosis. Semin Respir Crit Care Med 32(6):727–734

    Article  PubMed  Google Scholar 

  43. Nunez M, Peacock JE Jr, Chin R Jr (2000) Pulmonary cryptococcosis in the immunocompetent host. Therapy with oral fluconazole: a report of four cases and a review of the literature. Chest 118(2):527–534

    Article  CAS  PubMed  Google Scholar 

  44. McMullan BJ, Sorrell TC, Chen SC (2013) Cryptococcus gattii infections: contemporary aspects of epidemiology, clinical manifestations and management of infection. Future Microbiol 8(12):1613–1631

    Article  CAS  PubMed  Google Scholar 

  45. Colombo AC, Rodrigues ML (2015) Fungal colonization of the brain: anatomopathological aspects of neurological cryptococcosis. An Acad Bras Cienc 87(2 Suppl):1293–1309

    Article  PubMed  Google Scholar 

  46. Ecevit IZ et al (2006) The poor prognosis of central nervous system cryptococcosis among nonimmunosuppressed patients: a call for better disease recognition and evaluation of adjuncts to antifungal therapy. Clin Infect Dis 42(10):1443–1447

    Article  PubMed  Google Scholar 

  47. Lui G et al (2006) Cryptococcosis in apparently immunocompetent patients. QJM 99(3):143–151

    Article  CAS  PubMed  Google Scholar 

  48. Fries BC et al (2005) Phenotypic switching of Cryptococcus neoformans can produce variants that elicit increased intracranial pressure in a rat model of cryptococcal meningoencephalitis. Infect Immun 73(3):1779–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Okun E, Butler WT (1964) Ophthalmologic complications of Cryptococcal meningitis. Arch Ophthalmol 71:52–57

    Article  CAS  PubMed  Google Scholar 

  50. Custis PH, Haller JA, de Juan E Jr (1995) An unusual case of cryptococcal endophthalmitis. Retina 15(4):300–304

    Article  CAS  PubMed  Google Scholar 

  51. Perfect JR, Bicanic T (2015) Cryptococcosis diagnosis and treatment: what do we know now. Fungal Genet Biol 78:49–54

    Article  PubMed  Google Scholar 

  52. Chiriac A et al (2017) Primary cutaneous cryptococcosis during infliximab therapy. Dermatol Ther 30(1):1–3

    Google Scholar 

  53. Kwon-Chung KJ et al (2000) Cryptococcosis: clinical and biological aspects. Med Mycol 38(Suppl 1):205–213

    Article  PubMed  Google Scholar 

  54. Wilson ML, Sewell LD, Mowad CM (2008) Primary cutaneous Cryptococcosis during therapy with methotrexate and adalimumab. J Drugs Dermatol 7(1):53–54

    PubMed  Google Scholar 

  55. Revenga F et al (2002) Primary cutaneous cryptococcosis in an immunocompetent host: case report and review of the literature. Dermatology 204(2):145–149

    Article  CAS  PubMed  Google Scholar 

  56. Neuville S et al (2003) Primary cutaneous cryptococcosis: a distinct clinical entity. Clin Infect Dis 36(3):337–347

    Article  PubMed  Google Scholar 

  57. Dora JM et al (2006) Cutaneous cryptococccosis due to Cryptococcus gattii in immunocompetent hosts: case report and review. Mycopathologia 161(4):235–238

    Article  PubMed  Google Scholar 

  58. Probst C et al (2010) Cryptococcosis mimicking cutaneous cellulitis in a patient suffering from rheumatoid arthritis: a case report. BMC Infect Dis 10:239

    Article  PubMed  PubMed Central  Google Scholar 

  59. Manrique P et al (1992) Polymorphous cutaneous cryptococcosis: nodular, herpes-like, and molluscum-like lesions in a patient with the acquired immunodeficiency syndrome. J Am Acad Dermatol 26(1):122–124

    Article  CAS  PubMed  Google Scholar 

  60. Wykoff CC et al (2009) Intraocular cryptococcoma. Arch Ophthalmol 127(5):700–702

    Article  PubMed  Google Scholar 

  61. Alzahrani YA et al (2016) Cryptococcal iridociliary granuloma. Surv Ophthalmol 61(4):498–501

    Article  PubMed  Google Scholar 

  62. Wada R et al (2008) Granulomatous prostatitis due to Cryptococcus neoformans: diagnostic usefulness of special stains and molecular analysis of 18S rDNA. Prostate Cancer Prostatic Dis 11(2):203–206

    Article  CAS  PubMed  Google Scholar 

  63. Siddiqui TJ, Zamani T, Parada JP (2005) Primary cryptococcal prostatitis and correlation with serum prostate specific antigen in a renal transplant recipient. J Infect 51(3):e153–e157

    Article  PubMed  Google Scholar 

  64. Allen R et al (1982) Disseminated cryptococcosis after transurethral resection of the prostate. Aust NZ J Med 12(4):296–299

    Article  CAS  Google Scholar 

  65. Larsen RA et al (1989) Persistent Cryptococcus neoformans infection of the prostate after successful treatment of meningitis. California Collaborative Treatment Group. Ann Intern Med 111(2):125–128

    Article  CAS  PubMed  Google Scholar 

  66. Staib F, Seibold M, L'Age M (1990) Persistence of Cryptococcus neoformans in seminal fluid and urine under itraconazole treatment. The urogenital tract (prostate) as a niche for Cryptococcus neoformans. Mycoses 33(7–8):369–373

    CAS  PubMed  Google Scholar 

  67. Seo IY et al (2006) Granulomatous cryptococcal prostatitis diagnosed by transrectal biopsy. Int J Urol 13(5):638–639

    Article  PubMed  Google Scholar 

  68. Lief M, Sarfarazi F (1986) Prostatic cryptococcosis in acquired immune deficiency syndrome. Urology 28(4):318–319

    Article  CAS  PubMed  Google Scholar 

  69. Bal CK et al (2014) Spontaneous cryptococcal peritonitis with fungemia in patients with decompensated cirrhosis: Report of two cases. Indian J Crit Care Med 18(8):536–539

    Article  PubMed  PubMed Central  Google Scholar 

  70. Stead KJ et al (1988) Septic arthritis due to Cryptococcus neoformans. J Infect 17(2):139–145

    Article  CAS  PubMed  Google Scholar 

  71. Flagg SD et al (2001) Myositis resulting from disseminated cryptococcosis in a patient with hepatitis C cirrhosis. Clin Infect Dis 32(7):1104–1107

    Article  CAS  PubMed  Google Scholar 

  72. Farr RW, Wright RA (1992) Cryptococcal olecranon bursitis in cirrhosis. J Rheumatol 19(1):172–173

    CAS  PubMed  Google Scholar 

  73. Daly JS et al (1990) Disseminated, nonmeningeal gastrointestinal cryptococcal infection in an HIV-negative patient. Am J Gastroenterol 85(10):1421–1424

    CAS  PubMed  Google Scholar 

  74. Thalla R et al (2009) Sequestration of active Cryptococcus neoformans infection in the parathyroid gland despite prolonged therapy in a renal transplant recipient. Transpl Infect Dis 11(4):349–352

    Article  CAS  PubMed  Google Scholar 

  75. Kantarcioglu AS et al (2006) Cryptococcal parotid involvement: an uncommon localization of Cryptococcus neoformans. Med Mycol 44(3):279–283

    Article  PubMed  Google Scholar 

  76. Salyer WR et al (1973) Adrenal involvement in cryptococcosis. Am J Clin Pathol 60(4):559–561

    Article  CAS  PubMed  Google Scholar 

  77. Liu PY (1998) Cryptococcal osteomyelitis: case report and review. Diagn Microbiol Infect Dis 30(1):33–35

    Article  CAS  PubMed  Google Scholar 

  78. Tan DB et al (2008) Immunological profiles of immune restoration disease presenting as mycobacterial lymphadenitis and cryptococcal meningitis. HIV Med 9(5):307–316

    Article  CAS  PubMed  Google Scholar 

  79. Singh N, Perfect JR (2007) Immune reconstitution syndrome associated with opportunistic mycoses. Lancet Infect Dis 7(6):395–401

    Article  PubMed  Google Scholar 

  80. Nunnari G et al (2013) Cryptococcal meningitis in an HIV-1-infected person: relapses or IRIS? Case report and review of the literature. Eur Rev Med Pharmacol Sci 17(11):1555–1559

    CAS  PubMed  Google Scholar 

  81. Crypto Collab Tx Study Gp, Alexander BDSC, Forrest G, Johnson L, Lortholary O, Singh N (2008) Cryptococcus-associated Immune Reconstitution Syndrome (IRS) in Solid Organ Transplant (SOT) recipients: results from a prospective, multicenter study. In 48th annual ICAAC/Infectious Diseases Society of America. Washington, DC

    Google Scholar 

  82. Shelburne SA III et al (2005) The role of immune reconstitution inflammatory syndrome in AIDS-related Cryptococcus neoformans disease in the era of highly active antiretroviral therapy. Clin Infect Dis 40(7):1049–1052

    Article  PubMed  Google Scholar 

  83. Chen SC et al (2013) Antifungal therapy and management of complications of cryptococcosis due to Cryptococcus gattii. Clin Infect Dis 57(4):543–551

    Article  CAS  PubMed  Google Scholar 

  84. World Health Organization (2011) Rapid advice: diagnosis, prevention and management of cryptococcal disease in HIV-infected adults, adolescents and children. Geneva

    Google Scholar 

  85. Mesa-Arango AC, Scorzoni L, Zaragoza O (2012) It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Front Microbiol 3:286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Day JN et al (2013) Combination antifungal therapy for cryptococcal meningitis. N Engl J Med 368(14):1291–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bicanic T et al (2008) High-dose amphotericin B with flucytosine for the treatment of cryptococcal meningitis in HIV-infected patients: a randomized trial. Clin Infect Dis 47(1):123–130

    Article  CAS  PubMed  Google Scholar 

  88. Barratt G, Bretagne S (2007) Optimizing efficacy of Amphotericin B through nanomodification. Int J Nanomedicine 2(3):301–313

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Loyse A et al (2013) Cryptococcal meningitis: improving access to essential antifungal medicines in resource-poor countries. Lancet Infect Dis 13(7):629–637

    Article  PubMed  Google Scholar 

  90. Groll AH et al (2003) Clinical pharmacology of antifungal compounds. Infect Dis Clin N Am 17(1):159–191, ix

    Google Scholar 

  91. Brouwer AE et al (2007) Oral versus intravenous flucytosine in patients with human immunodeficiency virus-associated cryptococcal meningitis. Antimicrob Agents Chemother 51(3):1038–1042

    Article  CAS  PubMed  Google Scholar 

  92. Loyse A et al (2013) Flucytosine and cryptococcosis: time to urgently address the worldwide accessibility of a 50-year-old antifungal. J Antimicrob Chemother 68(11):2435–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Harris BE et al (1986) Conversion of 5-fluorocytosine to 5-fluorouracil by human intestinal microflora. Antimicrob Agents Chemother 29(1):44–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gray KC et al (2012) Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci U S A 109(7):2234–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Saag MS, Dismukes WE (1988) Azole antifungal agents: emphasis on new triazoles. Antimicrob Agents Chemother 32(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hajjeh RA, Brandt ME, Pinner RW (1995) Emergence of cryptococcal disease: epidemiologic perspectives 100 years after its discovery. Epidemiol Rev 17(2):303–320

    Article  CAS  PubMed  Google Scholar 

  97. Antinori S (2013) New Insights into HIV/AIDS-Associated Cryptococcosis. ISRN AIDS 2013:471363

    Article  PubMed  PubMed Central  Google Scholar 

  98. Antinori S et al (2009) AIDS-associated cryptococcosis: a comparison of epidemiology, clinical features and outcome in the pre- and post-HAART eras. Experience of a single centre in Italy. HIV Med 10(1):6–11

    Article  CAS  PubMed  Google Scholar 

  99. Kendi C et al (2013) Predictors of outcome in routine care for Cryptococcal meningitis in Western Kenya: lessons for HIV outpatient care in resource-limited settings. Postgrad Med J 89(1048):73–77

    Article  PubMed  Google Scholar 

  100. Perfect JR et al (2010) Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis 50(3):291–322

    Article  PubMed  Google Scholar 

  101. Brouwer AE et al (2004) Combination antifungal therapies for HIV-associated cryptococcal meningitis: a randomised trial. Lancet 363(9423):1764–1767

    Article  CAS  PubMed  Google Scholar 

  102. Rajasingham R et al (2012) Cryptococcal meningitis treatment strategies in resource-limited settings: a cost-effectiveness analysis. PLoS Med 9(9):e1001316

    Article  PubMed  PubMed Central  Google Scholar 

  103. Southern African HIV Clinicians Society T (2013) Guideline for the prevention, diagnosis and management of cryptococcal meningitis among HIV-infected persons: 2013 update. South Afr J HIV Med 14(2):76

    Article  Google Scholar 

  104. Dromer F et al (2008) Major role for amphotericin B-flucytosine combination in severe cryptococcosis. PLoS One 3(8):e2870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Day JN et al (2011) Most cases of cryptococcal meningitis in HIV-uninfected patients in Vietnam are due to a distinct amplified fragment length polymorphism-defined cluster of Cryptococcus neoformans var. grubii VN1. J Clin Microbiol 49(2):658–664

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bicanic T et al (2006) Symptomatic relapse of HIV-associated cryptococcal meningitis after initial fluconazole monotherapy: the role of fluconazole resistance and immune reconstitution. Clin Infect Dis 43(8):1069–1073

    Article  CAS  PubMed  Google Scholar 

  107. van der Horst CM et al (1997) Treatment of cryptococcal meningitis associated with the acquired immunodeficiency syndrome. National Institute of Allergy and Infectious Diseases Mycoses Study Group and AIDS Clinical Trials Group. N Engl J Med 337(1):15–21

    Article  PubMed  Google Scholar 

  108. Bozzette SA et al (1991) A placebo-controlled trial of maintenance therapy with fluconazole after treatment of cryptococcal meningitis in the acquired immunodeficiency syndrome. California Collaborative Treatment Group. N Engl J Med 324(9):580–584

    Article  CAS  PubMed  Google Scholar 

  109. Saag MS et al (1999) A comparison of itraconazole versus fluconazole as maintenance therapy for AIDS-associated cryptococcal meningitis. National Institute of Allergy and Infectious Diseases Mycoses Study Group. Clin Infect Dis 28(2):291–296

    Article  CAS  PubMed  Google Scholar 

  110. Mussini C et al (2004) Discontinuation of maintenance therapy for cryptococcal meningitis in patients with AIDS treated with highly active antiretroviral therapy: an international observational study. Clin Infect Dis 38(4):565–571

    Article  PubMed  Google Scholar 

  111. Zolopa A et al (2009) Early antiretroviral therapy reduces AIDS progression/death in individuals with acute opportunistic infections: a multicenter randomized strategy trial. PLoS One 4(5):e5575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Chang CC et al (2013) Clinical and mycological predictors of cryptococcosis-associated immune reconstitution inflammatory syndrome. AIDS 27(13):2089–2099

    Article  CAS  PubMed  Google Scholar 

  113. Makadzange AT et al (2010) Early versus delayed initiation of antiretroviral therapy for concurrent HIV infection and cryptococcal meningitis in sub-saharan Africa. Clin Infect Dis 50(11):1532–1538

    Article  CAS  PubMed  Google Scholar 

  114. Musubire AK et al (2012) Challenges in diagnosis and management of Cryptococcal immune reconstitution inflammatory syndrome (IRIS) in resource limited settings. Afr Health Sci 12(2):226–230

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Haddow LJ et al (2010) Cryptococcal immune reconstitution inflammatory syndrome in HIV-1-infected individuals: proposed clinical case definitions. Lancet Infect Dis 10(11):791–802

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bicanic TA et al (2013) Starting ART following cryptococcal meningitis: the optimal time has yet to be defined. South Afr J HIV Med 14(3):105

    Article  Google Scholar 

  117. Lesho E (2006) Evidence base for using corticosteroids to treat HIV-associated immune reconstitution syndrome. Expert Rev Anti-Infect Ther 4(3):469–478

    Article  CAS  PubMed  Google Scholar 

  118. Husain S, Wagener MM, Singh N (2001) Cryptococcus neoformans infection in organ transplant recipients: variables influencing clinical characteristics and outcome. Emerg Infect Dis 7(3):375–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. La Hoz RM, Pappas PG (2013) Cryptococcal infections: changing epidemiology and implications for therapy. Drugs 73(6):495–504

    Article  PubMed  CAS  Google Scholar 

  120. Davis JA et al (2009) Central nervous system involvement in cryptococcal infection in individuals after solid organ transplantation or with AIDS. Transpl Infect Dis 11(5):432–437

    Article  CAS  PubMed  Google Scholar 

  121. Singh N et al (2005) Antifungal management practices and evolution of infection in organ transplant recipients with Cryptococcus neoformans infection. Transplantation 80(8):1033–1039

    Article  PubMed  Google Scholar 

  122. Singh N et al (2007) Cryptococcus neoformans in organ transplant recipients: impact of calcineurin-inhibitor agents on mortality. J Infect Dis 195(5):756–764

    Article  PubMed  PubMed Central  Google Scholar 

  123. Karie-Guigues S et al (2009) Long-term renal function in liver transplant recipients and impact of immunosuppressive regimens (calcineurin inhibitors alone or in combination with mycophenolate mofetil): the TRY study. Liver Transpl 15(9):1083–1091

    Article  PubMed  Google Scholar 

  124. Allison AC, Eugui EM (2005) Mechanisms of action of mycophenolate mofetil in preventing acute and chronic allograft rejection. Transplantation 80(2 Suppl):S181–S190

    Article  CAS  PubMed  Google Scholar 

  125. Singh N et al (2005) An immune reconstitution syndrome-like illness associated with Cryptococcus neoformans infection in organ transplant recipients. Clin Infect Dis 40(12):1756–1761

    Article  CAS  PubMed  Google Scholar 

  126. Moen MD, Lyseng-Williamson KA, Scott LJ (2009) Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs 69(3):361–392

    Article  CAS  PubMed  Google Scholar 

  127. Dromer F et al (1996) Epidemiology of cryptococcosis in France: a 9-year survey (1985-1993). French Cryptococcosis Study Group. Clin Infect Dis 23(1):82–90

    Article  CAS  PubMed  Google Scholar 

  128. Sun HY, Wagener MM, Singh N (2009) Cryptococcosis in solid-organ, hematopoietic stem cell, and tissue transplant recipients: evidence-based evolving trends. Clin Infect Dis 48(11):1566–1576

    Article  PubMed  Google Scholar 

  129. Rolfes MA et al (2014) The effect of therapeutic lumbar punctures on acute mortality from cryptococcal meningitis. Clin Infect Dis 59(11):1607–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Singh N et al (2008) Cryptococcosis in solid organ transplant recipients: current state of the science. Clin Infect Dis 47(10):1321–1327

    Article  PubMed  PubMed Central  Google Scholar 

  131. Henao-Martinez AF, Beckham JD (2015) Cryptococcosis in solid organ transplant recipients. Curr Opin Infect Dis 28(4):300–307

    Article  PubMed  Google Scholar 

  132. Dismukes WE et al (1987) Treatment of cryptococcal meningitis with combination amphotericin B and flucytosine for four as compared with six weeks. N Engl J Med 317(6):334–341

    Article  CAS  PubMed  Google Scholar 

  133. Tristano AG (2010) Cryptococcal meningitis and systemic lupus erythematosus: a case report and review. Rev Chil Infectol 27(2):155–159

    Article  Google Scholar 

  134. Chen HS et al (2007) Invasive fungal infection in systemic lupus erythematosus: an analysis of 15 cases and a literature review. Rheumatology (Oxford) 46(3):539–544

    Article  CAS  Google Scholar 

  135. Yao Z, Liao W, Chen R (2005) Management of cryptococcosis in non-HIV-related patients. Med Mycol 43(3):245–251

    Article  CAS  PubMed  Google Scholar 

  136. Datta K et al (2009) Spread of Cryptococcus gattii into Pacific Northwest region of the United States. Emerg Infect Dis 15(8):1185–1191

    Article  PubMed  PubMed Central  Google Scholar 

  137. Arayawichanont A et al (1999) Successful medical treatment of multiple cryptococcomas: report of a case and literature review. J Med Assoc Thail 82(10):991–999

    CAS  Google Scholar 

  138. Hospenthal DR, Bennett JE (2000) Persistence of cryptococcomas on neuroimaging. Clin Infect Dis 31(5):1303–1306

    Article  CAS  PubMed  Google Scholar 

  139. Blackie JD et al (1985) Ophthalmological complications of cryptococcal meningitis. Clin Exp Neurol 21:263–270

    CAS  PubMed  Google Scholar 

  140. Kozel TR, Wickes B (2014) Fungal diagnostics. Cold Spring Harb Perspect Med 4(4):a019299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Perfect JR, Casadevall A (2002) Cryptococcosis. Infect Dis Clin N Am 16(4):837–874, v–vi

    Google Scholar 

  142. Vidal JE, Boulware DR (2015) Lateral flow assay for cryptococcal antigen: an important advance to improve the continuum of HIV care and reduce cryptococcal meningitis-related mortality. Rev Inst Med Trop Sao Paulo 57(Suppl 19):38–45

    Article  PubMed  PubMed Central  Google Scholar 

  143. Menezes Rde P, Penatti MP, Pedroso Rdos S (2011) Different culture media containing methyldopa for melanin production by Cryptococcus species. Rev Soc Bras Med Trop 44(5):591–594

    Article  PubMed  Google Scholar 

  144. Klein KR et al (2009) Identification of Cryptococcus gattii by use of L-canavanine glycine bromothymol blue medium and DNA sequencing. J Clin Microbiol 47(11):3669–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dominic RS et al (2009) Diagnostic value of latex agglutination in cryptococcal meningitis. J Lab Physicians 1(2):67–68

    Article  PubMed  PubMed Central  Google Scholar 

  146. Rivera V et al (2015) Validation and clinical application of a molecular method for the identification of Cryptococcus neoformans/Cryptococcus gattii complex DNA in human clinical specimens. Braz J Infect Dis 19(6):563–570

    Article  PubMed  Google Scholar 

  147. Trilles L et al (2008) Regional pattern of the molecular types of Cryptococcus neoformans and Cryptococcus gattii in Brazil. Mem Inst Oswaldo Cruz 103(5):455–462

    Article  CAS  PubMed  Google Scholar 

  148. Trilles L et al (2014) Identification of the major molecular types of Cryptococcus neoformans and C. gattii by Hyperbranched rolling circle amplification. PLoS One 9(4):e94648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Sidrim JJ et al (2010) Molecular methods for the diagnosis and characterization of Cryptococcus: a review. Can J Microbiol 56(6):445–458

    Article  CAS  PubMed  Google Scholar 

  150. Meyer W et al (2009) Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol 47(6):561–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Casadevall A (2012) Fungi and the rise of mammals. PLoS Pathog 8(8):e1002808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Petter R et al (2001) A survey of heterobasidiomycetous yeasts for the presence of the genes homologous to virulence factors of Filobasidiella neoformans, CNLAC1 and CAP59. Microbiology 147(Pt 8):2029–2036

    Article  CAS  PubMed  Google Scholar 

  153. Perfect JR, Lang SD, Durack DT (1980) Chronic cryptococcal meningitis: a new experimental model in rabbits. Am J Pathol 101(1):177–194

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Kuhn LR (1949) Effect of elevated body temperatures on cryptococcosis in mice. Proc Soc Exp Biol Med 71(3):341–343

    Article  CAS  PubMed  Google Scholar 

  155. Littman ML, Zimmerman LE (1956) Cryptococcosis. Grune & Stratton, New York

    Google Scholar 

  156. Fox DS, Cox GM, Heitman J (2003) Phospholipid-binding protein Cts1 controls septation and functions coordinately with calcineurin in Cryptococcus neoformans. Eukaryot Cell 2(5):1025–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Griffith CL et al (2004) UDP-glucose dehydrogenase plays multiple roles in the biology of the pathogenic fungus Cryptococcus neoformans. J Biol Chem 279(49):51669–51676

    Article  CAS  PubMed  Google Scholar 

  158. Moyrand F, Janbon G (2004) UGD1, encoding the Cryptococcus neoformans UDP-glucose dehydrogenase, is essential for growth at 37 degrees C and for capsule biosynthesis. Eukaryot Cell 3(6):1601–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kingsbury JM et al (2004) Cryptococcus neoformans Ilv2p confers resistance to sulfometuron methyl and is required for survival at 37 degrees C and in vivo. Microbiology 150(Pt 5):1547–1558

    Article  CAS  PubMed  Google Scholar 

  160. Giles SS et al (2005) Cryptococcus neoformans mitochondrial superoxide dismutase: an essential link between antioxidant function and high-temperature growth. Eukaryot Cell 4(1):46–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ngamskulrungroj P et al (2009) The trehalose synthesis pathway is an integral part of the virulence composite for Cryptococcus gattii. Infect Immun 77(10):4584–4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. de Gontijo FA et al (2014) The role of the de novo pyrimidine biosynthetic pathway in Cryptococcus neoformans high temperature growth and virulence. Fungal Genet Biol 70:12–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Nosanchuk JD, Stark RE, Casadevall A (2015) Fungal melanin: what do we know about structure? Front Microbiol 6:1463

    PubMed  PubMed Central  Google Scholar 

  164. Williamson PR, Wakamatsu K, Ito S (1998) Melanin biosynthesis in Cryptococcus neoformans. J Bacteriol 180(6):1570–1572

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Land EJ, Ramsden CA, Riley PA (2004) Quinone chemistry and melanogenesis. Methods Enzymol 378:88–109

    Article  CAS  PubMed  Google Scholar 

  166. Eisenman HC, Casadevall A (2012) Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93(3):931–940

    Article  CAS  PubMed  Google Scholar 

  167. Pukkila-Worley R et al (2005) Transcriptional network of multiple capsule and melanin genes governed by the Cryptococcus neoformans cyclic AMP cascade. Eukaryot Cell 4(1):190–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Panepinto J et al (2009) Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans. Mol Microbiol 71(5):1165–1176

    Article  CAS  PubMed  Google Scholar 

  169. Missall TA et al (2005) Distinct stress responses of two functional laccases in Cryptococcus neoformans are revealed in the absence of the thiol-specific antioxidant Tsa1. Eukaryot Cell 4(1):202–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Eisenman HC et al (2009) Vesicle-associated melanization in Cryptococcus neoformans. Microbiology 155(Pt 12):3860–3867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Salas SD et al (1996) Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans. J Exp Med 184(2):377–386

    Article  CAS  PubMed  Google Scholar 

  172. Mednick AJ, Nosanchuk JD, Casadevall A (2005) Melanization of Cryptococcus neoformans affects lung inflammatory responses during cryptococcal infection. Infect Immun 73(4):2012–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wang Y, Aisen P, Casadevall A (1995) Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun 63(8):3131–3136

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Jacobson ES, Tinnell SB (1993) Antioxidant function of fungal melanin. J Bacteriol 175(21):7102–7104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Huffnagle GB et al (1995) Down-regulation of the afferent phase of T cell-mediated pulmonary inflammation and immunity by a high melanin-producing strain of Cryptococcus neoformans. J Immunol 155(7):3507–3516

    CAS  PubMed  Google Scholar 

  176. Rosas AL et al (2000) Synthesis of polymerized melanin by Cryptococcus neoformans in infected rodents. Infect Immun 68(5):2845–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Rosas AL et al (2002) Activation of the alternative complement pathway by fungal melanins. Clin Diagn Lab Immunol 9(1):144–148

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Ikeda R et al (2003) Effects of melanin upon susceptibility of Cryptococcus to antifungals. Microbiol Immunol 47(4):271–277

    Article  CAS  PubMed  Google Scholar 

  179. Martinez LR, Casadevall A (2006) Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 50(3):1021–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. van Duin D et al (2004) Effects of voriconazole on Cryptococcus neoformans. Antimicrob Agents Chemother 48(6):2014–2020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Chayakulkeeree M et al (2011) SEC14 is a specific requirement for secretion of phospholipase B1 and pathogenicity of Cryptococcus neoformans. Mol Microbiol 80(4):1088–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Singh A et al (2013) Factors required for activation of urease as a virulence determinant in Cryptococcus neoformans. MBio 4(3):e00220–e00213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ghannoum MA (2003) Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 13(1):122–143, table of contents

    Google Scholar 

  184. Cox GM et al (2001) Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Mol Microbiol 39(1):166–175

    Article  CAS  PubMed  Google Scholar 

  185. Santangelo RT et al (1999) Biochemical and functional characterisation of secreted phospholipase activities from Cryptococcus neoformans in their naturally occurring state. J Med Microbiol 48(8):731–740

    Article  CAS  PubMed  Google Scholar 

  186. Chen SC et al (1997) Identification of extracellular phospholipase B, lysophospholipase, and acyltransferase produced by Cryptococcus neoformans. Infect Immun 65(2):405–411

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Maruvada R et al (2012) Cryptococcus neoformans phospholipase B1 activates host cell Rac1 for traversal across the blood-brain barrier. Cell Microbiol 14(10):1544–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Hole CR et al (2012) Mechanisms of dendritic cell lysosomal killing of Cryptococcus. Sci Rep 2:739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Smith LM, Dixon EF, May RC (2015) The fungal pathogen Cryptococcus neoformans manipulates macrophage phagosome maturation. Cell Microbiol 17(5):702–713

    Article  CAS  PubMed  Google Scholar 

  190. Noverr MC et al (2003) Role of PLB1 in pulmonary inflammation and cryptococcal eicosanoid production. Infect Immun 71(3):1538–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Cox GM et al (2000) Urease as a virulence factor in experimental cryptococcosis. Infect Immun 68(2):443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lee MH et al (1992) Klebsiella aerogenes urease gene cluster: sequence of ureD and demonstration that four accessory genes (ureD, ureE, ureF, and ureG) are involved in nickel metallocenter biosynthesis. J Bacteriol 174(13):4324–4330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Mobley HL (1996) The role of Helicobacter pylori urease in the pathogenesis of gastritis and peptic ulceration. Aliment Pharmacol Ther 10(Suppl 1):57–64

    Article  CAS  PubMed  Google Scholar 

  194. Rappleye CA, Goldman WE (2006) Defining virulence genes in the dimorphic fungi. Annu Rev Microbiol 60:281–303

    Article  CAS  PubMed  Google Scholar 

  195. Osterholzer JJ et al (2009) Cryptococcal urease promotes the accumulation of immature dendritic cells and a non-protective T2 immune response within the lung. Am J Pathol 174(3):932–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Olszewski MA et al (2004) Urease expression by Cryptococcus neoformans promotes microvascular sequestration, thereby enhancing central nervous system invasion. Am J Pathol 164(5):1761–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Shi M et al (2010) Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain. J Clin Invest 120(5):1683–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Barnett JA (2010) A history of research on yeasts 14: medical yeasts part 2, Cryptococcus neoformans. Yeast 27(11):875–904

    Article  CAS  PubMed  Google Scholar 

  199. Benham RW (1935) Cryptococci: their identification by morphology and by serology. J Infect Dis 57(3):255–274

    Article  CAS  Google Scholar 

  200. Evans EE, Mehl JW (1951) A qualitative analysis of capsular poly-saccharides from Cryptococcus neoformans by filter paper chromatography. Science (Washington) 114(2949):10–11

    Article  CAS  Google Scholar 

  201. Evans EE (1950) The antigenic composition of Cryptococcus neoformans. I. A serologic classification by means of the capsular and agglutination reactions. J Immunol 64(5):423–430

    CAS  PubMed  Google Scholar 

  202. Rebers PA et al (1958) Precipitation of the specific polysaccharide of Cryptococcus neoformans A by types II and XIV antipneumococcal sera1. J Am Chem Soc 80(5):1135–1137

    Article  CAS  Google Scholar 

  203. Bhattacharjee AK, Kwon-Chung KJ, Glaudemans CP (1980) Structural studies on the major, capsular polysaccharide from Cryptococcus bacillisporus serotype B. Carbohydr Res 82(1):103–111

    Article  CAS  PubMed  Google Scholar 

  204. Cherniak R, Reiss E, Turner SH (1982) A galactoxylomannan antigen of Cryptococcus neoformans serotype A. Carbohydr Res 103(2):239–250

    Article  CAS  Google Scholar 

  205. O'Meara TR, Alspaugh JA (2012) The Cryptococcus neoformans capsule: a sword and a shield. Clin Microbiol Rev 25(3):387–408

    Article  PubMed  PubMed Central  Google Scholar 

  206. Zaragoza O et al (2009) The capsule of the fungal pathogen Cryptococcus neoformans. Adv Appl Microbiol 68:133–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. McFadden DC et al (2007) Capsule structural heterogeneity and antigenic variation in Cryptococcus neoformans. Eukaryot Cell 6(8):1464–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Janbon G et al (2001) Cas1p is a membrane protein necessary for the O-acetylation of the Cryptococcus neoformans capsular polysaccharide. Mol Microbiol 42(2):453–467

    Article  CAS  PubMed  Google Scholar 

  209. McFadden DC, De Jesus M, Casadevall A (2006) The physical properties of the capsular polysaccharides from Cryptococcus neoformans suggest features for capsule construction. J Biol Chem 281(4):1868–1875

    Article  CAS  PubMed  Google Scholar 

  210. Heiss C et al (2009) The structure of Cryptococcus neoformans galactoxylomannan contains beta-D-glucuronic acid. Carbohydr Res 344(7):915–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Bar-Peled M, Griffith CL, Doering TL (2001) Functional cloning and characterization of a UDP- glucuronic acid decarboxylase: the pathogenic fungus Cryptococcus neoformans elucidates UDP-xylose synthesis. Proc Natl Acad Sci U S A 98(21):12003–12008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Moyrand F et al (2008) UGE1 and UGE2 regulate the UDP-glucose/UDP-galactose equilibrium in Cryptococcus neoformans. Eukaryot Cell 7(12):2069–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Yoneda A, Doering TL (2009) An unusual organelle in Cryptococcus neoformans links luminal pH and capsule biosynthesis. Fungal Genet Biol 46(9):682–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Moyrand F, Fontaine T, Janbon G (2007) Systematic capsule gene disruption reveals the central role of galactose metabolism on Cryptococcus neoformans virulence. Mol Microbiol 64(3):771–781

    Article  CAS  PubMed  Google Scholar 

  215. Gilbert NM et al (2010) KRE genes are required for beta-1,6-glucan synthesis, maintenance of capsule architecture and cell wall protein anchoring in Cryptococcus neoformans. Mol Microbiol 76(2):517–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Reese AJ, Doering TL (2003) Cell wall alpha-1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Mol Microbiol 50(4):1401–1409

    Article  CAS  PubMed  Google Scholar 

  217. Baker LG et al (2007) Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot Cell 6(5):855–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Fonseca FL et al (2009) Role for chitin and chitooligomers in the capsular architecture of Cryptococcus neoformans. Eukaryot Cell 8(10):1543–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Siafakas AR et al (2007) Cell wall-linked cryptococcal phospholipase B1 is a source of secreted enzyme and a determinant of cell wall integrity. J Biol Chem 282(52):37508–37514

    Article  CAS  PubMed  Google Scholar 

  220. Frases S et al (2009) Capsule of Cryptococcus neoformans grows by enlargement of polysaccharide molecules. Proc Natl Acad Sci U S A 106(4):1228–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Zaragoza O et al (2006) The polysaccharide capsule of the pathogenic fungus Cryptococcus neoformans enlarges by distal growth and is rearranged during budding. Mol Microbiol 59(1):67–83

    Article  CAS  PubMed  Google Scholar 

  222. Charlier C et al (2005) Capsule structure changes associated with Cryptococcus neoformans crossing of the blood-brain barrier. Am J Pathol 166(2):421–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Mansour MK, Levitz SM (2002) Interactions of fungi with phagocytes. Curr Opin Microbiol 5(4):359–365

    Article  CAS  PubMed  Google Scholar 

  224. Kozel TR, Gotschlich EC (1982) The capsule of Cryptococcus neoformans passively inhibits phagocytosis of the yeast by macrophages. J Immunol 129(4):1675–1680

    CAS  PubMed  Google Scholar 

  225. Syme RM et al (1999) The capsule of Cryptococcus neoformans reduces T-lymphocyte proliferation by reducing phagocytosis, which can be restored with anticapsular antibody. Infect Immun 67(9):4620–4627

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Syme RM et al (2002) Primary dendritic cells phagocytose Cryptococcus neoformans via mannose receptors and Fcgamma receptor II for presentation to T lymphocytes. Infect Immun 70(11):5972–5981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Monari C et al (2005) Glucuronoxylomannan, a microbial compound, regulates expression of costimulatory molecules and production of cytokines in macrophages. J Infect Dis 191(1):127–137

    Article  CAS  PubMed  Google Scholar 

  228. Monari C et al (2006) Microbial immune suppression mediated by direct engagement of inhibitory Fc receptor. J Immunol 177(10):6842–6851

    Article  CAS  PubMed  Google Scholar 

  229. Alvarez M, Casadevall A (2006) Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr Biol 16(21):2161–2165

    Article  CAS  PubMed  Google Scholar 

  230. Zaragoza O et al (2008) Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell Microbiol 10(10):2043–2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Tucker SC, Casadevall A (2002) Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc Natl Acad Sci U S A 99(5):3165–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Wilder JA et al (2002) Complementation of a capsule deficient Cryptococcus neoformans with CAP64 restores virulence in a murine lung infection. Am J Respir Cell Mol Biol 26(3):306–314

    Article  CAS  PubMed  Google Scholar 

  233. Barbosa FM et al (2007) Binding of glucuronoxylomannan to the CD14 receptor in human A549 alveolar cells induces interleukin-8 production. Clin Vaccine Immunol 14(1):94–98

    Article  CAS  PubMed  Google Scholar 

  234. De Jesus M et al (2008) Spleen deposition of Cryptococcus neoformans capsular glucuronoxylomannan in rodents occurs in red pulp macrophages and not marginal zone macrophages expressing the C-type lectin SIGN-R1. Med Mycol 46(2):153–162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Murphy JW, Cozad GC (1972) Immunological unresponsiveness induced by cryptococcal capsular polysaccharide assayed by the hemolytic plaque technique. Infect Immun 5(6):896–901

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Mody CH, Syme RM (1993) Effect of polysaccharide capsule and methods of preparation on human lymphocyte proliferation in response to Cryptococcus neoformans. Infect Immun 61(2):464–469

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Yauch LE, Lam JS, Levitz SM (2006) Direct inhibition of T-cell responses by the Cryptococcus capsular polysaccharide glucuronoxylomannan. PLoS Pathog 2(11):e120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Barluzzi R et al (1998) Role of the capsule in microglial cell-Cryptococcus neoformans interaction: impairment of antifungal activity but not of secretory functions. Med Mycol 36(4):189–197

    CAS  PubMed  Google Scholar 

  239. Monari C et al (2008) Capsular polysaccharide induction of apoptosis by intrinsic and extrinsic mechanisms. Cell Microbiol 10(10):2129–2137

    Article  CAS  PubMed  Google Scholar 

  240. Dong ZM, Murphy JW (1997) Cryptococcal polysaccharides bind to CD18 on human neutrophils. Infect Immun 65(2):557–563

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Rodrigues ML et al (2007) Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell 6(1):48–59

    Article  CAS  PubMed  Google Scholar 

  242. Peres da Silva R et al (2015) Extracellular vesicles from Paracoccidioides pathogenic species transport polysaccharide and expose ligands for DC-SIGN receptors. Sci Rep 5:14213

    Article  CAS  PubMed  Google Scholar 

  243. Rodrigues ML et al (2008) Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 7(1):58–67

    Article  CAS  PubMed  Google Scholar 

  244. Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 28:445–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Rivera J et al (2002) Antibody efficacy in murine pulmonary Cryptococcus neoformans infection: a role for nitric oxide. J Immunol 168(7):3419–3427

    Article  CAS  PubMed  Google Scholar 

  246. Hardison SE et al (2010) Pulmonary infection with an interferon-γ-producing Cryptococcus neoformans strain results in classical macrophage activation and protection. Am J Pathol 176(2):774–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Huffnagle GB et al (1996) Afferent phase production of TNF-alpha is required for the development of protective T cell immunity to Cryptococcus neoformans. J Immunol 157(10):4529–4536

    CAS  PubMed  Google Scholar 

  248. Xu J et al (2016) Disruption of early tumor necrosis factor alpha signaling prevents classical activation of dendritic cells in lung-associated lymph nodes and development of protective immunity against cryptococcal infection. mBio 7(4):e00510–e00516

    Article  PubMed  PubMed Central  Google Scholar 

  249. Herring AC et al (2002) Induction of interleukin-12 and gamma interferon requires tumor necrosis factor alpha for protective T1-cell-mediated immunity to pulmonary Cryptococcus neoformans infection. Infect Immun 70(6):2959–2964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Monari C et al (2005) Cryptococcus neoformans capsular glucuronoxylomannan induces expression of fas ligand in macrophages. J Immunol 174(6):3461–3468

    Article  CAS  PubMed  Google Scholar 

  251. Small JM, Mitchell TG (1989) Strain variation in antiphagocytic activity of capsular polysaccharides from Cryptococcus neoformans serotype A. Infect Immun 57(12):3751–3756

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Levitz SM (1994) Macrophage-Cryptococcus interactions. Immunol Ser 60:533–543

    CAS  PubMed  Google Scholar 

  253. Aguirre KM, Gibson GW (2000) Differing requirement for inducible nitric oxide synthase activity in clearance of primary and secondary Cryptococcus neoformans infection. Med Mycol 38(5):343–353

    Article  CAS  PubMed  Google Scholar 

  254. Naslund PK, Miller WC, Granger DL (1995) Cryptococcus neoformans fails to induce nitric oxide synthase in primed murine macrophage-like cells. Infect Immun 63(4):1298–1304

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Facchetti F et al (1999) Expression of inducible nitric oxide synthase in human granulomas and histiocytic reactions. Am J Pathol 154(1):145–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Xiao G et al (2008) Cryptococcus neoformans inhibits nitric oxide synthesis caused by CpG-oligodeoxynucleotide-stimulated macrophages in a fashion independent of capsular polysaccharides. Microbiol Immunol 52(3):171–179

    Article  CAS  PubMed  Google Scholar 

  257. Arora S et al (2005) Role of IFN-γ in regulating T2 immunity and the development of alternatively activated macrophages during allergic bronchopulmonary mycosis. J Immunol 174(10):6346–6356

    Article  CAS  PubMed  Google Scholar 

  258. Qiu Y et al (2012) Immune modulation mediated by cryptococcal laccase promotes pulmonary growth and brain dissemination of virulent Cryptococcus neoformans in mice. PLoS One 7(10):e47853–e47853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Eastman AJ et al (2015) Cryptococcal heat shock protein 70 homolog Ssa1 contributes to pulmonary expansion of Cryptococcus neoformans during the afferent phase of the immune response by promoting macrophage M2 polarization. J Immunol 194(12):5999–6010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Arora S et al (2011) Effect of cytokine interplay on macrophage polarization during chronic pulmonary infection with Cryptococcus neoformans. Infect Immun 79(5):1915–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Kawakami K et al (1999) Differential effect of Cryptococcus neoformans on the production of IL-12p40 and IL-10 by murine macrophages stimulated with lipopolysaccharide and gamma interferon. FEMS Microbiol Lett 175(1):87–94

    Article  CAS  PubMed  Google Scholar 

  262. Deshaw M, Pirofski LA (1995) Antibodies to the Cryptococcus neoformans capsular glucuronoxylomannan are ubiquitous in serum from HIV+ and HIV− individuals. Clin Exp Immunol 99(3):425–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Abe K et al (2000) Th1-Th2 cytokine kinetics in the bronchoalveolar lavage fluid of mice infected with Cryptococcus neoformans of different virulences. Microbiol Immunol 44(10):849–855

    Article  CAS  PubMed  Google Scholar 

  264. Kechichian TB, Shea J, Poeta MD (2007) Depletion of alveolar macrophages decreases the dissemination of a glucosylceramide-deficient mutant of Cryptococcus neoformans in immunodeficient mice. Infect Immun 75(10):4792–4798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Levitz SM et al (1999) Cryptococcus neoformans resides in an acidic phagolysosome of human macrophages. Infect Immun 67(2):885–890

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Voelz K et al (2014) ‘Division of labour’ in response to host oxidative burst drives a fatal Cryptococcus gattii outbreak. Nat Commun 5:5194–5194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Johnston SA, May RC (2010) The human fungal pathogen Cryptococcus neoformans escapes macrophages by a phagosome emptying mechanism that is inhibited by Arp2/3 complex-mediated actin polymerisation. PLoS Pathog 6(8):e1001041–e1001041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Nicola AM et al (2011) Nonlytic exocytosis of Cryptococcus neoformans from macrophages occurs in vivo and is influenced by phagosomal pH. MBio 2(4):e00167–e00111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Liu T-B, Perlin DS, Xue C (2012) Molecular mechanisms of cryptococcal meningitis. Virulence 3(2):173–181

    Article  PubMed  PubMed Central  Google Scholar 

  270. Diamond RD, Bennett JE (1973) Growth of Cryptococcus neoformans within human macrophages in vitro. Infect Immun 7(2):231–236

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Ngamskulrungroj P et al (2012) The primary target organ of Cryptococcus gattii is different from that of Cryptococcus neoformans in a murine model. MBio 3(3):e00103–e00112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Qureshi A et al (2010) Role of sphingomyelin synthase in controlling the antimicrobial activity of neutrophils against Cryptococcus neoformans. PLoS One 5(12):e15587–e15587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Rocha JDB et al (2015) Capsular polysaccharides from Cryptococcus neoformans modulate production of neutrophil extracellular traps (NETs) by human neutrophils. Sci Rep 5:8008–8008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Qureshi A et al (2011) Cryptococcus neoformans modulates extracellular killing by neutrophils. Front Microbiol 2:193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Mednick AJ et al (2003) Neutropenia alters lung cytokine production in mice and reduces their susceptibility to pulmonary cryptococcosis. Eur J Immunol 33(6):1744–1753

    Article  CAS  PubMed  Google Scholar 

  276. Wozniak KL, Vyas JM, Levitz SM (2006) In vivo role of dendritic cells in a murine model of pulmonary cryptococcosis. Infect Immun 74(7):3817–3824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Wozniak KL, Kolls JK, Wormley FL (2012) Depletion of neutrophils in a protective model of pulmonary cryptococcosis results in increased IL-17A production by gamma/delta T cells. BMC Immunol 13(1):65–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Dong ZM, Murphy JW (1996) Cryptococcal polysaccharides induce L-selectin shedding and tumor necrosis factor receptor loss from the surface of human neutrophils. J Clin Invest 97(3):689–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Wiseman JCD et al (2007) Perforin-dependent cryptococcal microbicidal activity in NK cells requires PI3K-dependent ERK1/2 signaling. J Immunol 178(10):6456–6464

    Article  CAS  PubMed  Google Scholar 

  280. Marr KJ et al (2009) Cryptococcus neoformans directly stimulates perforin production and rearms NK cells for enhanced anticryptococcal microbicidal activity. Infect Immun 77(6):2436–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Islam A et al (2013) An acidic microenvironment increases NK cell killing of Cryptococcus neoformans and Cryptococcus gattii by enhancing perforin degranulation. PLoS Pathog 9(7):e1003439–e1003439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Miller MF et al (1990) Human natural killer cells do not inhibit growth of Cryptococcus neoformans in the absence of antibody. Infect Immun 58(3):639–645

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Cordero RJB et al (2013) Antibody binding to Cryptococcus neoformans impairs budding by altering capsular mechanical properties. J Immunol 190(1):317–323

    Article  CAS  PubMed  Google Scholar 

  284. Kawakami K et al (2000) IL-18 contributes to host resistance against infection with Cryptococcus neoformans in mice with defective IL-12 synthesis through induction of IFN-gamma production by NK cells. J Immunol 165(2):941–947

    Article  CAS  PubMed  Google Scholar 

  285. Kawakami K et al (2000) NK cells eliminate Cryptococcus neoformans by potentiating the fungicidal activity of macrophages rather than by directly killing them upon stimulation with IL-12 and IL-18. Microbiol Immunol 44(12):1043–1050

    Article  CAS  PubMed  Google Scholar 

  286. Zhang T et al (1997) Interleukin-12 (IL-12) and IL-18 synergistically induce the fungicidal activity of murine peritoneal exudate cells against Cryptococcus neoformans through production of gamma interferon by natural killer cells. Infect Immun 65(9):3594–3599

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Müller U et al (2013) Abrogation of IL-4 receptor-α-dependent alternatively activated macrophages is sufficient to confer resistance against pulmonary cryptococcosis despite an ongoing Th2 response. Int Immunol 25(8):459–470

    Article  PubMed  CAS  Google Scholar 

  288. Kelly RM et al (2005) Opsonic requirements for dendritic cell-mediated responses to Cryptococcus neoformans. Infect Immun 73(1):592–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Hole CR et al (2016) Antifungal activity of plasmacytoid dendritic cells against Cryptococcus neoformans in vitro requires expression of dectin-3 (CLEC4D) and reactive oxygen species. Infect Immun 84(9):2493–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Huston SM et al (2013) Cryptococcus gattii is killed by dendritic cells, but evades adaptive immunity by failing to induce dendritic cell maturation. J Immunol 191(1):249–261

    Article  CAS  PubMed  Google Scholar 

  291. Wozniak KL, Levitz SM (2008) Cryptococcus neoformans enters the endolysosomal pathway of dendritic cells and is killed by lysosomal components. Infect Immun 76(10):4764–4771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Ueno K et al (2015) Dendritic cell-based immunization ameliorates pulmonary infection with highly virulent Cryptococcus gattii. Infect Immun 83(4):1577–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Hage CA et al (2003) Pulmonary cryptococcosis after initiation of anti-tumor necrosis factor-α therapy. Chest 124(6):2395–2397

    Article  PubMed  Google Scholar 

  294. Lupo P et al (2008) The presence of capsule in Cryptococcus neoformans influences the gene expression profile in dendritic cells during interaction with the fungus. Infect Immun 76(4):1581–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Grijpstra J et al (2009) The Cryptococcus neoformans cap10 and cap59 mutant strains, affected in glucuronoxylomannan synthesis, differentially activate human dendritic cells. FEMS Immunol Med Microbiol 57(2):142–150

    Article  CAS  PubMed  Google Scholar 

  296. Hardison SE, Brown GD (2012) C-type lectin receptors orchestrate antifungal immunity. Nat Immunol 13(9):817–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Pericolini E et al (2006) Cryptococcus neoformans capsular polysaccharide component galactoxylomannan induces apoptosis of human T-cells through activation of caspase-8. Cell Microbiol 8(2):267–275

    Article  CAS  PubMed  Google Scholar 

  298. Stenzel W et al (2009) IL-4/IL-13-dependent alternative activation of macrophages but not microglial cells is associated with uncontrolled cerebral cryptococcosis. Am J Pathol 174(2):486–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Dyken SJV, Locksley RM (2013) Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol 31(1):317–343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  300. Müller U et al (2007) IL-13 induces disease-promoting type 2 cytokines, alternatively activated macrophages and allergic inflammation during pulmonary infection of mice with Cryptococcus neoformans. J Immunol 179(8):5367–5377

    Article  PubMed  Google Scholar 

  301. Zhang Y et al (2009) Robust Th1 and Th17 immunity supports pulmonary clearance but cannot prevent systemic dissemination of highly virulent Cryptococcus neoformans H99. Am J Pathol 175(6):2489–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Wager CML et al (2015) STAT1 signaling within macrophages is required for antifungal activity against Cryptococcus neoformans. Infect Immun 83(12):4513–4527

    Article  CAS  Google Scholar 

  303. Szymczak WA, Sellers RS, Pirofski L-a (2012) IL-23 dampens the allergic response to Cryptococcus neoformans through IL-17–independent and –dependent mechanisms. Am J Pathol 180(4):1547–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Müller U et al (2012) Lack of IL-4 receptor expression on T helper cells reduces T helper 2 cell polyfunctionality and confers resistance in allergic bronchopulmonary mycosis. Mucosal Immunol 5(3):299–310

    Article  PubMed  CAS  Google Scholar 

  305. Ma LL et al (2002) CD8 T cell-mediated killing of Cryptococcus neoformans requires granulysin and is dependent on CD4 T cells and IL-15. J Immunol 169(10):5787–5795

    Article  CAS  PubMed  Google Scholar 

  306. Mody CH et al (1994) Un vivo depletion of murine CD8 positive T cells impairs survival during infection with a highly virulent strain ofCryptococcus neoformans. Mycopathologia 125(1):7–17

    Article  CAS  PubMed  Google Scholar 

  307. Jarvis JN et al (2013) The phenotype of the Cryptococcus-specific cd4+ memory t-cell response is associated with disease severity and outcome in hiv-associated cryptococcal meningitis. J Infect Dis 207(12):1817–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Zaragoza O, Casadevall A (2006) Monoclonal antibodies can affect complement deposition on the capsule of the pathogenic fungus Cryptococcus neoformans by both classical pathway activation and steric hindrance. Cell Microbiol 8(12):1862–1876

    Article  CAS  PubMed  Google Scholar 

  309. Nabavi N, Murphy JW (1986) Antibody-dependent natural killer cell-mediated growth inhibition of Cryptococcus neoformans. Infect Immun 51(2):556–562

    CAS  PubMed  PubMed Central  Google Scholar 

  310. Rosas ÁL, Nosanchuk JD, Casadevall A (2001) Passive immunization with melanin-binding monoclonal antibodies prolongs survival of mice with lethal Cryptococcus neoformans infection. Infect Immun 69(5):3410–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. McClelland EE et al (2010) Ab binding alters gene expression in Cryptococcus neoformans and directly modulates fungal metabolism. J Clin Invest 120(4):1355–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Rodrigues ML et al (2000) Human antibodies against a purified glucosylceramide from Cryptococcus neoformans inhibit cell budding and fungal growth. Infect Immun 68(12):7049–7060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Rachini A et al (2007) An anti-β-glucan monoclonal antibody inhibits growth and capsule formation of Cryptococcus neoformans in vitro and exerts therapeutic, anticryptococcal activity in vivo. Infect Immun 75(11):5085–5094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. McClelland EE, Casadevall A (2012) Strain-related differences in antibody-mediated changes in gene expression are associated with differences in capsule and location of binding. Fungal Genet Biol 49(3):227–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Dromer F et al (1987) Protection of mice against experimental cryptococcosis by anti-Cryptococcus neoformans monoclonal antibody. Infect Immun 55(3):749–752

    CAS  PubMed  PubMed Central  Google Scholar 

  316. Mukherjee S et al (1994) Monoclonal antibodies to Cryptococcus neoformans capsular polysaccharide modify the course of intravenous infection in mice. Infect Immun 62(3):1079–1088

    CAS  PubMed  PubMed Central  Google Scholar 

  317. Fleuridor R, Zhong Z, Pirofski L-a (1998) A human IgM monoclonal antibody prolongs survival of mice with lethal cryptococcosis. J Infect Dis 178(4):1213–1216

    Article  CAS  PubMed  Google Scholar 

  318. Rivera J, Zaragoza O, Casadevall A (2005) Antibody-mediated protection against Cryptococcus neoformans pulmonary infection is dependent on B cells. Infect Immun 73(2):1141–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Subramaniam KS et al (2010) Improved survival of mice deficient in secretory immunoglobulin M following systemic infection with Cryptococcus neoformans. Infect Immun 78(1):441–452

    Article  CAS  PubMed  Google Scholar 

  320. Aguirre KM, Johnson LL (1997) A role for B cells in resistance to Cryptococcus neoformans in mice. Infect Immun 65(2):525–530

    CAS  PubMed  PubMed Central  Google Scholar 

  321. Baumgarth N (2011) The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol 11(1):34–46

    Article  CAS  PubMed  Google Scholar 

  322. Espinel-Ingroff A, Kidd SE (2015) Current trends in the prevalence of Cryptococcus gattii in the United States and Canada. Infect Drug Resist 8:89–97

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda L. Fonseca D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Godinho, R.M.d.C. et al. (2017). Cryptococcus and Cryptococcosis. In: Mora-Montes, H., Lopes-Bezerra, L. (eds) Current Progress in Medical Mycology. Springer, Cham. https://doi.org/10.1007/978-3-319-64113-3_6

Download citation

Publish with us

Policies and ethics