Skip to main content

Low-Power and Low-Cost Stiffness-Variable Oesophageal Tissue Phantom

  • Conference paper
  • First Online:
Book cover Towards Autonomous Robotic Systems (TAROS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10454))

Included in the following conference series:

  • 3091 Accesses

Abstract

Biological tissues are complex structures with changing mechanical properties depending on physiological or pathological factors. Thus they are extendible under normal conditions or stiff if they are subject to an inflammatory reaction. We design and fabricate a low-power and low-cost stiffness-variable tissue phantom (SVTP) that can extend up to 250% and contract up to 5.4% at 5 V (1.4 W), mimicking properties of biological tissues. We investigated the mechanical characteristics of SVTP in simulation and experiment. We also demonstrate its potential by building an oesophagus phantom for testing appropriate force controls in a robotic implant that is meant to manipulate biological oesophageal tissues with changing stiffness in vivo. The entire platform permits efficient testing of robotic implants in the context of anomalies such as long gap esophageal atresia, and could potentially serve as a replacement for live animal tissues.

A. Thorn and D. Afacan—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afacan, D.: Stiffness-adaptive control of tissue manipulation using a robotic implant. Master’s thesis, University of Sheffield, Sheffield, UK (2016)

    Google Scholar 

  2. Balapgol, B.S., Kulkarni, S.A., Bajoria, K.M.: A review on shape memory alloy structures. Int. J. Acoust. Vibr. 9(2), 61–68 (2004)

    Google Scholar 

  3. Bergeles, C., Guang-Zhong, Y.: From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots. IEEE Trans. Biomed. Eng. 61(5), 1565–1576 (2014)

    Article  Google Scholar 

  4. Bhatia, S.N., Ingber, D.E.: Microfluidic organs-on-chips. Nat. Biotech. 32, 760–772 (2014)

    Article  Google Scholar 

  5. Caldwell, D.G., Medrano-Cerda, G., Goodwin, M.: Control of pneumatic muscle actuators. IEEE Control Syst. Mag. 15(1), 40–48 (1995)

    Article  Google Scholar 

  6. Cartabuke, R.H., Lopez, R., Thota, P.N.: Long-term esophageal and respiratory outcomes in children with esophageal atresia and tracheoesophageal fistula. Oxford J. Med. Health Gastroenterol. Rep., 1–5 (2015)

    Google Scholar 

  7. Corr, D.T., Hart, D.A.: Biomechanics of scar tissue and uninjured skin. Adv. Wound Care (New Rochelle) 2(2), 37–43 (2013)

    Article  Google Scholar 

  8. Costa, I.F.: A novel deformation method for fast simulation of biological tissue formed by fibers and fluid. Med. Image Anal. 16(5), 1038–1046 (2012)

    Article  Google Scholar 

  9. Damian, D.D., et al.: Robotic implant to apply tissue traction forces in the treatment of esophageal atresia. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 786–792 (2014)

    Google Scholar 

  10. Foker, J.E., et al.: Development of a true primary repair for the full spectrum of esophageal atresia. Ann. Surg. 226(4), 533–543 (1997)

    Article  Google Scholar 

  11. Foker, J.E., et al.: Long-gap esophageal atresia treated by growth induction: the biological potential and early follow-up results. Semin. Pediatr. Surg. 18, 23–29 (2009)

    Article  Google Scholar 

  12. Fries, F., et al.: Electromagnetically driven elastic actuator. In: International Conference on Robotics and Biomimetics, pp. 309–314 (2014)

    Google Scholar 

  13. Goyal, R.K., Chaudhury, A.: Physiology of normal esophageal motility. J. Clin. Gastroenterol. 42(5), 610–619 (2008)

    Article  Google Scholar 

  14. Haines, C., et al.: Artificial muscles from fishing line and sewing thread. Science 343, 868–872 (2014)

    Article  Google Scholar 

  15. Huh, D., Hamilton, G.A., Ingber, D.E.: From three-dimensional cell culture to organs-on-chips. Trends Cell Biol. 21(12), 745–754 (2011)

    Article  Google Scholar 

  16. Jung, K., Kim, K.J., Choi, H.R.: Self-sensing of dielectric elastomer actuator. Sens. Actuators A Phys. 143, 343–351 (2008)

    Article  Google Scholar 

  17. Klute, G.K., Czerniecki, J.M., Hannaford, B.: Mckibben artificial muscles: pneumatic actuators with biomechanical intelligence. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 221–226 (1999)

    Google Scholar 

  18. Kummer, M.P., et al.: OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1006–1017 (2010)

    Google Scholar 

  19. Laschi, C., et al.: Soft robot arm inspired by the octopus. Adv. Robot. 26(7), 709–727 (2012)

    Article  Google Scholar 

  20. Lendlein, A., Kelch, S.: Shape-memory polymers. Angew. Chem. Int. Ed. 41, 2034–2057 (2002)

    Article  Google Scholar 

  21. Martinez, R.V., et al.: Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Adv. Funct. Mater. 22, 1376–1384 (2012)

    Article  Google Scholar 

  22. Misra, S., Ramesh, K., Okamura, A.M.: Modeling of nonlinear elastic tissues for surgical simulation. Comput. Meth. Biomech. Biomed. Eng. 13(6), 811–818 (2010)

    Article  Google Scholar 

  23. Miyashita, S., et al.: Ingestible, controllable, and degradable origami robot for patching stomach wounds. In: IEEE International Conference on Robotics and Automation (ICRA) (2016)

    Google Scholar 

  24. Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J.: Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010)

    Article  Google Scholar 

  25. Ogawa, K., Narioka, K., Hosoda, K.: Development of whole-body humanoid “pneumat-BS” with pneumatic musculoskeletal system. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4838–4843 (2011)

    Google Scholar 

  26. Palacio-Torralba, J., et al.: Quantitative diagnostics of soft tissue through viscoelastic characterization using time-based instrumented palpation. J. Mech. Behav. Biomed. Mater. 41, 149–160 (2015)

    Article  Google Scholar 

  27. Roche, E.T., et al.: A bioinspired soft actuated material. Adv. Mater. 26(8), 1200–1206 (2014)

    Article  Google Scholar 

  28. Shan, W., et al.: Rigidity-tuning conductive elastomer. Smart Mater. Struct. 24(6), 343–351 (2015)

    Article  Google Scholar 

  29. Umedachi, T., Vikas, V., Trimmer, B.A.: Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots. Bioinspiration Biomimetics 11, 025001 (2016)

    Article  Google Scholar 

  30. Valdastri, P., Simi, M., Webster III, R.J.: Advanced technologies for gastrointestinal endoscopy. Annu. Rev. Biomed. Eng. 14, 397–429 (2012)

    Article  Google Scholar 

  31. Yim, S., Goyal, K., Sitti, M.: Magnetically actuated soft capsule with the multimodal drug relase function. IEEE/ASME Trans. Mechatron. 18(4), 1413–1418 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

We thank Emily Southern for her help with the paper revision. This work was supported by the University of Sheffield.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana D. Damian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Thorn, A., Afacan, D., Ingham, E., Kavak, C., Miyashita, S., Damian, D.D. (2017). Low-Power and Low-Cost Stiffness-Variable Oesophageal Tissue Phantom. In: Gao, Y., Fallah, S., Jin, Y., Lekakou, C. (eds) Towards Autonomous Robotic Systems. TAROS 2017. Lecture Notes in Computer Science(), vol 10454. Springer, Cham. https://doi.org/10.1007/978-3-319-64107-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64107-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64106-5

  • Online ISBN: 978-3-319-64107-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics