Racial Differences

Chapter
Part of the Molecular Pathology Library book series (MPLB)

Abstract

In the era of personalized medicine, identifying molecular differences in cancer among different ethnicities is increasingly important. Differences in the incidence and prognosis of prostate cancer have long been observed among different ethnic groups within the United States. Most comparative studies in the current literature involve Caucasians, African Americans, and various Asian populations, and thus this chapter will focus mostly on the molecular characteristics of prostate cancer in these ethnic populations. Both globally and within the United States, single nucleotide polymorphisms (SNPs) within certain genes have been identified in genome-wide association studies (GWAS) which have been found to be associated with a higher risk of prostate cancer, which also will be highlighted. Although it is well known now that African American men (AAM) experience a higher incidence and worse oncologic outcomes from prostate cancer than do Caucasian American men (CAM), which may be partially attributable to socioeconomic factors, there is now overwhelming evidence that there are certain heritable and acquired molecular alterations as well as differences in protein/serum biomarker expression that may contribute to the disparity observed between these populations. In light of new and evolving molecular diagnostic modalities and targeted treatments for prostate cancer, identification of ethnic differences in the molecular classification of this disease is an essential step in the process, and further research should be pursued in this area.

Keywords

Prostate cancer Race Ethnicity Molecular differences Caucasian African American Asian 

References

  1. 1.
    CDC—prostate cancer rates by race and ethnicity [Internet]. [cited 2015 Sep 5] Available from: http://www.cdc.gov/cancer/prostate/statistics/race.htm.
  2. 2.
    Kohler BA, Sherman RL, Howlader N, Jemal A, Ryerson AB, Henry KA, et al. Annual report to the nation on the status of cancer, 1975–2011, featuring incidence of breast cancer subtypes by race/ethnicity, poverty, and state. J Natl Cancer Inst. 2015;107(6):djv048.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Freedland SJ, Isaacs WB. Explaining racial differences in prostate cancer in the United States: sociology or biology? Prostate. 2005;62(3):243–52.PubMedCrossRefGoogle Scholar
  4. 4.
    XL D, Fang S, Coker AL, Sanderson M, Aragaki C, Cormier JN, et al. Racial disparity and socioeconomic status in association with survival in older men with local/regional stage prostate carcinoma: findings from a large community-based cohort. Cancer. 2006;106(6):1276–85.CrossRefGoogle Scholar
  5. 5.
    Alexander GA, Brawley OW. Prostate cancer treatment outcome in blacks and whites: a summary of the literature. Semin Urol Oncol. 1998;16(4):232–4.PubMedGoogle Scholar
  6. 6.
    Reddy S, Shapiro M, Morton R, Brawley OW. Prostate cancer in black and white Americans. Cancer Metastasis Rev. 2003;22(1):83–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Hoffman RM, Gilliland FD, Eley JW, Harlan LC, Stephenson RA, Stanford JL, et al. Racial and ethnic differences in advanced-stage prostate cancer: the prostate cancer outcomes study. J Natl Cancer Inst. 2001;93(5):388–95.PubMedCrossRefGoogle Scholar
  8. 8.
    Thompson I, Tangen C, Tolcher A, Crawford E, Eisenberger M, Moinpour C. Association of African-American ethnic background with survival in men with metastatic prostate cancer. J Natl Cancer Inst. 2001;93(3):219–25.PubMedCrossRefGoogle Scholar
  9. 9.
    Platz EA, Rimm EB, Willett WC, Kantoff PW, Giovannucci E. Racial variation in prostate cancer incidence and in hormonal system markers among male health professionals. J Natl Cancer Inst. 2000;92(24):2009–17.PubMedCrossRefGoogle Scholar
  10. 10.
    Robbins AS, Whittemore AS, Thom DH. Differences in socioeconomic status and survival among white and black men with prostate cancer. Am J Epidemiol. 2000;151(4):409–16.PubMedCrossRefGoogle Scholar
  11. 11.
    Dash A, Lee P, Zhou Q, Jean-Gilles J, Taneja S, Satagopan J, et al. Impact of socioeconomic factors on prostate cancer outcomes in black patients treated with surgery. Urology. 2008;72(3):641–6.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Tewari A, Horninger W, Pelzer AE, Demers R, Crawford ED, Gamito EJ, et al. Factors contributing to the racial differences in prostate cancer mortality. BJU Int. 2005;96(9):1247–52.PubMedCrossRefGoogle Scholar
  13. 13.
    Ritch CR, Morrison BF, Hruby G, Coard KC, Mayhew R, Aiken W, et al. Pathological outcome and biochemical recurrence-free survival after radical prostatectomy in African-American, afro-Caribbean (Jamaican) and Caucasian-American men: an international comparison. BJU Int. 2013;111(4 Pt B):E186–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Powell IJ, Banerjee M, Novallo M, Sakr W, Grignon D, Wood DP, et al. Prostate cancer biochemical recurrence stage for stage is more frequent among African-American than white men with locally advanced but not organ-confined disease. Urology. 2000;55(2):246–51.PubMedCrossRefGoogle Scholar
  15. 15.
    Powell IJ, Bock CH, Ruterbusch JJ, Sakr W. Evidence supports a faster growth rate and/or earlier transformation to clinically significant prostate cancer in black than in white American men, and influences racial progression and mortality disparity. J Urol. 2010;183(5):1792–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Powell IJ, Heilbrun LK, Sakr W, Grignon D, Montie J, Novallo M, et al. The predictive value of race as a clinical prognostic factor among patients with clinically localized prostate cancer: a multivariate analysis of positive surgical margins. Urology. 1997;49(5):726–31.PubMedCrossRefGoogle Scholar
  17. 17.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.PubMedCrossRefGoogle Scholar
  18. 18.
    Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012;61(6):1079–92.PubMedCrossRefGoogle Scholar
  19. 19.
    Gunderson K, Wang CY, Wang R. Global prostate cancer incidence and the migration, settlement, and admixture history of the Northern Europeans. Cancer Epidemiol. 2011;35(4):320–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Rebbeck TR, Devesa SS, Chang B-L, Bunker CH, Cheng I, Cooney K, et al. Global patterns of prostate cancer incidence, aggressiveness, and mortality in men of African descent. Prostate Cancer. 2013;560857:2013.Google Scholar
  21. 21.
    Hsing AW, Yeboah E, Biritwum R, Tettey Y, De Marzo AM, Adjei A, et al. High prevalence of screen detected prostate cancer in West Africans: implications for racial disparity of prostate cancer. J Urol. 2014;192(3):730–5.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Delongchamps NB, Singh A, Haas GP. Epidemiology of prostate cancer in Africa: another step in the understanding of the disease? Curr Probl Cancer. 2007;31(3):226–36.PubMedCrossRefGoogle Scholar
  23. 23.
    Odedina FT, Akinremi TO, Chinegwundoh F, Roberts R, Yu D, Reams RR, et al. Prostate cancer disparities in black men of African descent: a comparative literature review of prostate cancer burden among black men in the United States, Caribbean, United Kingdom, and West Africa. Infect Agent Cancer. 2009;4(Suppl 1):S2.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kimura T. East meets west: ethnic differences in prostate cancer epidemiology between east Asians and Caucasians. Chin J Cancer. 2012;31(9):421–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Miller BA, Chu KC, Hankey BF, Ries LAG. Cancer incidence and mortality patterns among specific Asian and Pacific islander populations in the U.S. Cancer Causes Control. 2008;19(3):227–56.PubMedCrossRefGoogle Scholar
  26. 26.
    McCracken M, Olsen M, Chen MS, Jemal A, Thun M, Cokkinides V, et al. Cancer incidence, mortality, and associated risk factors among Asian Americans of Chinese, Filipino, Vietnamese, Korean, and Japanese ethnicities. CA Cancer J Clin. 2007;57(4):190–205.PubMedCrossRefGoogle Scholar
  27. 27.
    Luo W, Birkett NJ, Ugnat A-M, Mao Y. Cancer incidence patterns among Chinese immigrant populations in Alberta. J Immigr Health. 2004;6(1):41–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Raymundo EM, Rice KR, Chen Y, Zhao J, Brassell SA. Prostate cancer in Asian Americans: incidence, management and outcomes in an equal access healthcare system. BJU Int. 2011;107(8):1216–22.PubMedCrossRefGoogle Scholar
  29. 29.
    Yan L, Spitznagel EL. Soy consumption and prostate cancer risk in men: a revisit of a meta-analysis. Am J Clin Nutr. 2009;89(4):1155–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Kurahashi N, Iwasaki M, Sasazuki S, Otani T, Inoue M, Tsugane S. Soy product and isoflavone consumption in relation to prostate cancer in Japanese men. Cancer Epidemiol Biomark Prev. 2007;16(3):538–45.CrossRefGoogle Scholar
  31. 31.
    Hwang YW, Kim SY, Jee SH, Kim YN, Nam CM. Soy food consumption and risk of prostate cancer: a meta-analysis of observational studies. Nutr Cancer. 2009;61(5):598–606.PubMedCrossRefGoogle Scholar
  32. 32.
    Moyad MA. Soy, disease prevention, and prostate cancer. Semin Urol Oncol. 1999;17(2):97–102.PubMedGoogle Scholar
  33. 33.
    Onozawa M, Kawamori T, Baba M, Fukuda K, Toda T, Sato H, et al. Effects of a soybean isoflavone mixture on carcinogenesis in prostate and seminal vesicles of F344 rats. Jpn J Cancer Res. 1999;90(4):393–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Edwards A, Hammond HA, Jin L, Caskey CT, Chakraborty R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics. 1992;12(2):241–53.PubMedCrossRefGoogle Scholar
  35. 35.
    Chamberlain NL, Driver ED, Miesfeld RL. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res. 1994;22(15):3181–6.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Sartor O, Zheng Q, Eastham JA. Androgen receptor gene CAG repeat length varies in a race-specific fashion in men without prostate cancer. Urology. 1999;53(2):378–80.PubMedCrossRefGoogle Scholar
  37. 37.
    Irvine RA, MC Y, Ross RK, Coetzee GA. The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res. 1995;55(9):1937–40.PubMedGoogle Scholar
  38. 38.
    Hardy DO, Scher HI, Bogenreider T, Sabbatini P, Zhang ZF, Nanus DM, et al. Androgen receptor CAG repeat lengths in prostate cancer: correlation with age of onset. J Clin Endocrinol Metab. 1996;81(12):4400–5.PubMedGoogle Scholar
  39. 39.
    Platz EA, Giovannucci E, Dahl DM, Krithivas K, Hennekens CH, Brown M, et al. The androgen receptor gene GGN microsatellite and prostate cancer risk. Cancer Epidemiol Biomark Prev. 1998;7(5):379–84.Google Scholar
  40. 40.
    Giovannucci E, Stampfer MJ, Krithivas K, Brown M, Dahl D, Brufsky A, et al. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci U S A. 1997;94(7):3320–3.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Bennett CL, Price DK, Kim S, Liu D, Jovanovic BD, Nathan D, et al. Racial variation in CAG repeat lengths within the androgen receptor gene among prostate cancer patients of lower socioeconomic status. J Clin Oncol. 2002;20(17):3599–604.PubMedCrossRefGoogle Scholar
  42. 42.
    Gilligan T, Manola J, Sartor O, Weinrich SP, Moul JW, Kantoff PW. Absence of a correlation of androgen receptor gene CAG repeat length and prostate cancer risk in an African-American population. Clin Prostate Cancer. 2004;3(2):98–103.PubMedCrossRefGoogle Scholar
  43. 43.
    Chen C, Lamharzi N, Weiss NS, Etzioni R, Dightman DA, Barnett M, et al. Androgen receptor polymorphisms and the incidence of prostate cancer. Cancer Epidemiol Biomark Prev. 2002;11(10 Pt 1):1033–40.Google Scholar
  44. 44.
    Lindström S, Ma J, Altshuler D, Giovannucci E, Riboli E, Albanes D, et al. A large study of androgen receptor germline variants and their relation to sex hormone levels and prostate cancer risk. Results from the National Cancer Institute breast and prostate cancer cohort consortium. J Clin Endocrinol Metab. 2010;95(9):E121–7.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Powell IJ, Land SJ, Dey J, Heilbrun LK, Hughes MR, Sakr W, et al. The impact of CAG repeats in exon 1 of the androgen receptor on disease progression after prostatectomy. Cancer. 2005;103(3):528–37.PubMedCrossRefGoogle Scholar
  46. 46.
    Rebbeck TR, Jaffe JM, Walker AH, Wein AJ, Malkowicz SB. Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst. 1998;90(16):1225–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Paris PL, Kupelian PA, Hall JM, Williams TL, Levin H, Klein EA, et al. Association between a CYP3A4 genetic variant and clinical presentation in African-American prostate cancer patients. Cancer Epidemiol Biomark Prev. 1999;8(10):901–5.Google Scholar
  48. 48.
    Powell IJ, Zhou J, Sun Y, Sakr WA, Patel NP, Heilbrun LK, et al. CYP3A4 genetic variant and disease-free survival among white and black men after radical prostatectomy. J Urol. 2004;172(5 Pt 1):1848–52.PubMedCrossRefGoogle Scholar
  49. 49.
    Bangsi D, Zhou J, Sun Y, Patel NP, Darga LL, Heilbrun LK, et al. Impact of a genetic variant in CYP3A4 on risk and clinical presentation of prostate cancer among white and African-American men. Urol Oncol. 2006;24(1):21–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Wilson JD, Griffin JE, Russell DW. Steroid 5 alpha-reductase 2 deficiency. Endocr Rev. 1993;14(5):577–93.PubMedGoogle Scholar
  51. 51.
    Neslund-Dudas C, Bock CH, Monaghan K, Nock NL, Yang JJ, Rundle A, et al. SRD5A2 and HSD3B2 polymorphisms are associated with prostate cancer risk and aggressiveness. Prostate. 2007;67(15):1654–63.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Makridakis NM, Ross RK, Pike MC, Crocitto LE, Kolonel LN, Pearce CL, et al. Association of mis-sense substitution in SRD5A2 gene with prostate cancer in African-American and Hispanic men in Los Angeles, USA. Lancet. 1999;354(9183):975–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Reichardt JK, Makridakis N, Henderson BE, MC Y, Pike MC, Ross RK. Genetic variability of the human SRD5A2 gene: implications for prostate cancer risk. Cancer Res. 1995;55(18):3973–5.PubMedGoogle Scholar
  54. 54.
    Torkko KC, van Bokhoven A, Mai P, Beuten J, Balic I, Byers TE, et al. VDR and SRD5A2 polymorphisms combine to increase risk for prostate cancer in both non-Hispanic white and Hispanic white men. Clin Cancer Res. 2008;14(10):3223–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Ntais C, Polycarpou A, Ioannidis JPA. SRD5A2 gene polymorphisms and the risk of prostate cancer: a meta-analysis. Cancer Epidemiol Biomark Prev. 2003;12(7):618–24.Google Scholar
  56. 56.
    Audet-Walsh E, Bellemare J, Nadeau G, Lacombe L, Fradet Y, Fradet V, et al. SRD5A polymorphisms and biochemical failure after radical prostatectomy. Eur Urol. 2011;60(6):1226–34.PubMedCrossRefGoogle Scholar
  57. 57.
    Lunn RM, Bell DA, Mohler JL, Taylor JA. Prostate cancer risk and polymorphism in 17 hydroxylase (CYP17) and steroid reductase (SRD5A2). Carcinogenesis. 1999;20(9):1727–31.PubMedCrossRefGoogle Scholar
  58. 58.
    Stanford JL, Noonan EA, Iwasaki L, Kolb S, Chadwick RB, Feng Z, et al. A polymorphism in the CYP17 gene and risk of prostate cancer. Cancer Epidemiol Biomark Prev. 2002;11(3):243–7.Google Scholar
  59. 59.
    Chang B, Zheng SL, Isaacs SD, Wiley KE, Carpten JD, Hawkins GA, et al. Linkage and association of CYP17 gene in hereditary and sporadic prostate cancer. Int J Cancer. 2001;95(6):354–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Gsur A, Bernhofer G, Hinteregger S, Haidinger G, Schatzl G, Madersbacher S, et al. A polymorphism in the CYP17 gene is associated with prostate cancer risk. Int J Cancer. 2000;87(3):434–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Kittles RA, Panguluri RK, Chen W, Massac A, Ahaghotu C, Jackson A, et al. Cyp17 promoter variant associated with prostate cancer aggressiveness in African Americans. Cancer Epidemiol Biomark Prev. 2001;10(9):943–7.Google Scholar
  62. 62.
    Ntais C, Polycarpou A, Ioannidis JPA. Association of the CYP17 gene polymorphism with the risk of prostate cancer: a meta-analysis. Cancer Epidemiol Biomark Prev. 2003;12(2):120–6.Google Scholar
  63. 63.
    Sarma AV, Dunn RL, Lange LA, Ray A, Wang Y, Lange EM, et al. Genetic polymorphisms in CYP17, CYP3A4, CYP19A1, SRD5A2, IGF-1, and IGFBP-3 and prostate cancer risk in African-American men: the Flint Men’s health study. Prostate. 2008;68(3):296–305.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Lévesque É, Huang S-P, Audet-Walsh É, Lacombe L, Bao B-Y, Fradet Y, et al. Molecular markers in key steroidogenic pathways, circulating steroid levels, and prostate cancer progression. Clin Cancer Res. 2013;19(3):699–709.PubMedCrossRefGoogle Scholar
  65. 65.
    Yamada Y, Watanabe M, Murata M, Yamanaka M, Kubota Y, Ito H, et al. Impact of genetic polymorphisms of 17-hydroxylase cytochrome P-450 (CYP17) and steroid 5alpha-reductase type II (SRD5A2) genes on prostate-cancer risk among the Japanese population. Int J Cancer. 2001;92(5):683–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Amundadottir LT, Sulem P, Gudmundsson J, Helgason A, Baker A, Agnarsson BA, et al. A common variant associated with prostate cancer in European and African populations. Nat Genet. 2006;38(6):652–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Freedman ML, Haiman CA, Patterson N, McDonald GJ, Tandon A, Waliszewska A, et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci U S A. 2006;103(38):14068–73.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Haiman CA, Patterson N, Freedman ML, Myers SR, Pike MC, Waliszewska A, et al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet. 2007;39(5):638–44.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Robbins C, Torres JB, Hooker S, Bonilla C, Hernandez W, Candreva A, et al. Confirmation study of prostate cancer risk variants at 8q24 in African Americans identifies a novel risk locus. Genome Res. 2007;17(12):1717–22.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Bock CH, Schwartz AG, Ruterbusch JJ, Levin AM, Neslund-Dudas C, Land SJ, et al. Results from a prostate cancer admixture mapping study in African-American men. Hum Genet. 2009;126(5):637–42.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Bensen JT, Xu Z, McKeigue PM, Smith GJ, Fontham ETH, Mohler JL, et al. Admixture mapping of prostate cancer in African Americans participating in the North Carolina-Louisiana prostate cancer project (PCaP). Prostate. 2014;74(1):1–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Chang B-L, Spangler E, Gallagher S, Haiman CA, Henderson B, Isaacs W, et al. Validation of genome-wide prostate cancer associations in men of African descent. Cancer Epidemiol Biomark Prev. 2011;20(1):23–32.CrossRefGoogle Scholar
  73. 73.
    Chan JY, Li H, Singh O, Mahajan A, Ramasamy S, Subramaniyan K, et al. 8q24 and 17q prostate cancer susceptibility loci in a multiethnic Asian cohort. Urol Oncol. 2013;31(8):1553–60.PubMedCrossRefGoogle Scholar
  74. 74.
    Helfand BT, Loeb S, Cashy J, Meeks JJ, Thaxton CS, Han M, et al. Tumor characteristics of carriers and noncarriers of the deCODE 8q24 prostate cancer susceptibility alleles. J Urol. 2008;179(6):2197–201. discussion 2202PubMedCrossRefGoogle Scholar
  75. 75.
    Whitman EJ, Pomerantz M, Chen Y, Chamberlin MM, Furusato B, Gao C, et al. Prostate cancer risk allele specific for African descent associates with pathologic stage at prostatectomy. Cancer Epidemiol Biomark Prev. 2010;19(1):1):1–8.CrossRefGoogle Scholar
  76. 76.
    Huusko P, Ponciano-Jackson D, Wolf M, Kiefer JA, Azorsa DO, Tuzmen S, et al. Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nat Genet. 2004;36(9):979–83.PubMedCrossRefGoogle Scholar
  77. 77.
    Kittles RA, Baffoe-Bonnie AB, Moses TY, Robbins CM, Ahaghotu C, Huusko P, et al. A common nonsense mutation in EphB2 is associated with prostate cancer risk in African American men with a positive family history. J Med Genet. 2006;43(6):507–11.PubMedCrossRefGoogle Scholar
  78. 78.
    Robbins CM, Hooker S, Kittles RA, Carpten JD. EphB2 SNPs and sporadic prostate cancer risk in African American men. PLoS One. 2011;6(5):e19494.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Matsui H, Suzuki K, Ohtake N, Nakata S, Takeuchi T, Yamanaka H, et al. Genomewide linkage analysis of familial prostate cancer in the Japanese population. J Hum Genet. 2004;49(1):9–15.PubMedCrossRefGoogle Scholar
  80. 80.
    Agalliu I, Lin DW, Salinas CA, Feng Z, Stanford JL. Polymorphisms in the glutathione S-transferase M1, T1, and P1 genes and prostate cancer prognosis. Prostate. 2006;66(14):1535–41.PubMedCrossRefGoogle Scholar
  81. 81.
    Mo Z, Gao Y, Cao Y, Gao F, Jian L. An updating meta-analysis of the GSTM1, GSTT1, and GSTP1 polymorphisms and prostate cancer: a HuGE review. Prostate. 2009;69(6):662–88.PubMedCrossRefGoogle Scholar
  82. 82.
    Z-H H, Lin Y-W, Xu X, Chen H, Mao Y-Q, Wu J, et al. Genetic polymorphisms of glutathione S-transferase M1 and prostate cancer risk in Asians: a meta-analysis of 18 studies. Asian Pac J Cancer Prev. 2013;14(1):393–8.CrossRefGoogle Scholar
  83. 83.
    Nock NL, Bock C, Neslund-Dudas C, Beebe-Dimmer J, Rundle A, Tang D, et al. Polymorphisms in glutathione S-transferase genes increase risk of prostate cancer biochemical recurrence differentially by ethnicity and disease severity. Cancer Causes Control. 2009;20(10):1915–26.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Cher ML, Lewis PE, Banerjee M, Hurley PM, Sakr W, Grignon DJ, et al. A similar pattern of chromosomal alterations in prostate cancers from African-Americans and Caucasian Americans. Clin Cancer Res. 1998;4(5):1273–8.PubMedGoogle Scholar
  85. 85.
    Washburn JG, Wojno KJ, Dey J, Powell IJ, Macoska JA. 8pter-p23 deletion is associated with racial differences in prostate cancer outcome. Clin Cancer Res. 2000;6(12):4647–52.PubMedGoogle Scholar
  86. 86.
    Morikawa A, Varma V, Gillespie TW, Lyles RH, Goodman M, Bostick RM, et al. Counting alleles in single lesions of prostate tumors from ethnically diverse patients. Prostate. 2008;68(3):231–40.PubMedCrossRefGoogle Scholar
  87. 87.
    Barnabas N, Xu L, Savera A, Hou Z, Barrack ER. Chromosome 8 markers of metastatic prostate cancer in African American men: gain of the MIR151 gene and loss of the NKX3-1 gene. Prostate. 2011;71(8):857–71.PubMedCrossRefGoogle Scholar
  88. 88.
    Castro P, Creighton CJ, Ozen M, Berel D, Mims MP, Ittmann M. Genomic profiling of prostate cancers from African American men. Neoplasia. 2009;11(3):305–12.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Khani F, Mosquera JM, Park K, Blattner M, O’Reilly C, MacDonald TY, et al. Evidence for molecular differences in prostate cancer between African American and Caucasian men. Clin Cancer Res. 2014;20(18):4925–34.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Magi-Galluzzi C, Tsusuki T, Elson P, Simmerman K, LaFargue C, Esgueva R, et al. TMPRSS2-ERG gene fusion prevalence and class are significantly different in prostate cancer of Caucasian, African-American and Japanese patients. Prostate. 2011;71(5):489–97.PubMedCrossRefGoogle Scholar
  91. 91.
    Rosen P, Pfister D, Young D, Petrovics G, Chen Y, Cullen J, et al. Differences in frequency of ERG oncoprotein expression between index tumors of Caucasian and African American patients with prostate cancer. Urology. 2012;80(4):749–53.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Powell IJ, Dyson G, Land S, Ruterbusch J, Bock CH, Lenk S, et al. Genes associated with prostate cancer are differentially expressed in african american and European american men. Cancer Epidemiol Biomark Prev. 2013;22(5):891–7.CrossRefGoogle Scholar
  93. 93.
    Miyagi Y, Sasaki T, Fujinami K, Sano J, Senga Y, Miura T, et al. ETS family-associated gene fusions in Japanese prostate cancer: analysis of 194 radical prostatectomy samples. Mod Pathol. 2010;23(11):1492–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Ren S, Peng Z, Mao J-H, Yu Y, Yin C, Gao X, et al. RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings. Cell Res. 2012;22(5):806–21.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Xue L, Mao X, Ren G, Stankiewicz E, Kudahetti SC, Lin D, et al. Chinese and western prostate cancers show alternate pathogenetic pathways in association with ERG status. Am J Cancer Res. 2012;2(6):736–44.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Lee K, Chae JY, Kwak C, Ku JH, Moon KC. TMPRSS2-ERG gene fusion and clinicopathologic characteristics of Korean prostate cancer patients. Urology. 2010;76(5):1268.e7–13.Google Scholar
  97. 97.
    Young A, Palanisamy N, Siddiqui J, Wood DP, Wei JT, Chinnaiyan AM, et al. Correlation of urine TMPRSS2:ERG and PCA3 to ERG+ and total prostate cancer burden. Am J Clin Pathol. 2012;138(5):685–96.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Tomlins SA, Aubin SMJ, Siddiqui J, Lonigro RJ, Sefton-Miller L, Miick S, et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med. 2011;3(94):94ra72.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Truong M, Yang B, Jarrard DF. Toward the detection of prostate cancer in urine: a critical analysis. J Urol. 2013;189(2):422–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Salami SS, Schmidt F, Laxman B, Regan MM, Rickman DS, Scherr D, et al. Combining urinary detection of TMPRSS2:ERG and PCA3 with serum PSA to predict diagnosis of prostate cancer. Urol Oncol. 2013;31(5):566–71.PubMedCrossRefGoogle Scholar
  101. 101.
    Phin S, Moore MW, Cotter PD. Genomic rearrangements of PTEN in prostate cancer. Front Oncol. 2013;3:240.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat J-P, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44(6):685–9.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, et al. The genomic complexity of primary human prostate cancer. Nature. 2011;470(7333):214–20.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Blattner M, Lee DJ, O’Reilly C, Park K, MacDonald TY, Khani F, et al. SPOP mutations in prostate cancer across demographically diverse patient cohorts. Neoplasia. 2014;16(1):14–20.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Kwabi-Addo B, Wang S, Chung W, Jelinek J, Patierno SR, Wang B-D, et al. Identification of differentially methylated genes in normal prostate tissues from African American and Caucasian men. Clin Cancer Res. 2010;16(14):3539–47.PubMedCrossRefGoogle Scholar
  106. 106.
    Woodson K, Hayes R, Wideroff L, Villaruz L, Tangrea J. Hypermethylation of GSTP1, CD44, and E-cadherin genes in prostate cancer among US blacks and whites. Prostate. 2003;55(3):199–205.PubMedCrossRefGoogle Scholar
  107. 107.
    Jiang D, Shen Y, Dai D, Xu Y, Xu C, Zhu H, et al. Meta-analyses of methylation markers for prostate cancer. Tumour Biol. 2014;35(10):10449–55.PubMedCrossRefGoogle Scholar
  108. 108.
    Tang D, Kryvenko ON, Mitrache N, Do KC, Jankowski M, Chitale DA, et al. Methylation of the RARB gene increases prostate cancer risk in black Americans. J Urol. 2013;190(1):317–24.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Jones J, Grizzle W, Wang H, Yates C. MicroRNAs that affect prostate cancer: emphasis on prostate cancer in African Americans. Biotech Histochem. 2013;88(7):410–24.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.PubMedCrossRefGoogle Scholar
  111. 111.
    Theodore SC, Rhim JS, Turner T, Yates C. MiRNA 26a expression in a novel panel of African American prostate cancer cell lines. Ethn Dis. 2010;20(1 Suppl 1.) S1-96-100.Google Scholar
  112. 112.
    Nock NL, Tang D, Rundle A, Neslund-Dudas C, Savera AT, Bock CH, et al. Associations between smoking, polymorphisms in polycyclic aromatic hydrocarbon (PAH) metabolism and conjugation genes and PAH-DNA adducts in prostate tumors differ by race. Cancer Epidemiol Biomark Prev. 2007;16(6):1236–45.CrossRefGoogle Scholar
  113. 113.
    Tang D, Kryvenko ON, Wang Y, Jankowski M, Trudeau S, Rundle A, et al. Elevated polycyclic aromatic hydrocarbon-DNA adducts in benign prostate and risk of prostate cancer in African Americans. Carcinogenesis. 2013;34(1):113–20.PubMedCrossRefGoogle Scholar
  114. 114.
    Shui IM, Mucci LA, Kraft P, Tamimi RM, Lindstrom S, Penney KL, et al. Vitamin D-related genetic variation, plasma vitamin D, and risk of lethal prostate cancer: a prospective nested case-control study. J Natl Cancer Inst. 2012;104(9):690–9.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Clemens TL, Adams JS, Henderson SL, Holick MF. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet. 1982;1(8263):74–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Williams H, Powell IJ, Land SJ, Sakr WA, Hughes MR, Patel NP, et al. Vitamin D receptor gene polymorphisms and disease free survival after radical prostatectomy. Prostate. 2004;61(3):267–75.PubMedCrossRefGoogle Scholar
  117. 117.
    Taksler GB, Cutler DM, Giovannucci E, Smith MR, Keating NL. Ultraviolet index and racial differences in prostate cancer incidence and mortality. Cancer. 2013;119(17):3195–203.PubMedCrossRefGoogle Scholar
  118. 118.
    Rink M, Park K, Volkmer BG, Xylinas E, Hansen J, Cha EK, et al. Loss of SPINK1 expression is associated with unfavorable outcomes in urothelial carcinoma of the bladder after radical cystectomy. Urol Oncol. 2012;31(8):1716–24.PubMedCrossRefGoogle Scholar
  119. 119.
    Leinonen KA, Tolonen TT, Bracken H, Stenman U-H, Tammela TLJ, Saramäki OR, et al. Association of SPINK1 expression and TMPRSS2:ERG fusion with prognosis in endocrine-treated prostate cancer. Clin Cancer Res. 2010;16(10):2845–51.PubMedCrossRefGoogle Scholar
  120. 120.
    Tomlins SA, Rhodes DR, Yu J, Varambally S, Mehra R, Perner S, et al. The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell. 2008;13(6):519–28.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Flavin R, Pettersson A, Hendrickson WK, Fiorentino M, Finn S, Kunz L, et al. SPINK1 protein expression and prostate cancer progression. Clin Cancer Res. 2014;20(18):4904–11.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Yamoah K, Johnson MH, Choeurng V, Faisal FA, Yousefi K, Haddad Z, et al. Novel biomarker signature that may predict aggressive disease in African American men with prostate cancer. J Clin Oncol. 2015;33(25):2789–96.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Johnson MH, Ross AE, Alshalalfa M, Erho N, Yousefi K, Glavaris S, et al. SPINK1 Defines a molecular subtype of prostate cancer in men with more rapid progression in an at risk, natural history radical prostatectomy cohort. J Urol. 2016;196(5):1436–44.PubMedCrossRefGoogle Scholar
  124. 124.
    Kim HS, Moreira DM, Jayachandran J, Gerber L, Bañez LL, Vollmer RT, et al. Prostate biopsies from black men express higher levels of aggressive disease biomarkers than prostate biopsies from white men. Prostate Cancer Prostatic Dis. 2011;14(3):262–5.PubMedCrossRefGoogle Scholar
  125. 125.
    Parker PM, Rice KR, Sterbis JR, Chen Y, Cullen J, McLeod DG, et al. Prostate cancer in men less than the age of 50: a comparison of race and outcomes. Urology. 2011;78(1):110–5.PubMedCrossRefGoogle Scholar
  126. 126.
    Faisal FA, Sundi D, Cooper JL, Humphreys EB, Partin AW, Han M, et al. Racial disparities in oncologic outcomes after radical prostatectomy: long-term follow-up. Urology. 2014;84(6):1434–41.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Ha Y-S, Salmasi A, Karellas M, Singer EA, Kim JH, Han M, et al. Increased incidence of pathologically nonorgan confined prostate cancer in African-American men eligible for active surveillance. Urology. 2013;81(4):831–6.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Mahal BA, Aizer AA, Ziehr DR, Hyatt AS, Choueiri TK, JC H, et al. Racial disparities in prostate cancer-specific mortality in men with low-risk prostate cancer. Clin Genitourin Cancer. 2014;12(5):e189–95.PubMedCrossRefGoogle Scholar
  129. 129.
    Pietzak EJ, Van Arsdalen K, Patel K, Malkowicz SB, Wein AJ, Guzzo TJ. Impact of race on selecting appropriate patients for active surveillance with seemingly low-risk prostate cancer. Urology. 2015;85(2):436–40.PubMedCrossRefGoogle Scholar
  130. 130.
    Sundi D, Kryvenko ON, Carter HB, Ross AE, Epstein JI, Schaeffer EM. Pathological examination of radical prostatectomy specimens in men with very low risk disease at biopsy reveals distinct zonal distribution of cancer in black American men. J Urol. 2014;191(1):60–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Sundi D, Ross AE, Humphreys EB, Han M, Partin AW, Carter HB, et al. African American men with very low-risk prostate cancer exhibit adverse oncologic outcomes after radical prostatectomy: should active surveillance still be an option for them? J Clin Oncol. 2013;31(24):2991–7.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineWeill Cornell Medical College, New York Presbyterian HospitalNew YorkUSA

Personalised recommendations