Advertisement

Genetic Susceptibility

  • John P. Greene
  • Stephen P. Finn
Chapter
Part of the Molecular Pathology Library book series (MPLB)

Abstract

Prostate cancer is a leading cause of morbidity and mortality among men in the United States and Western Europe. From 5% to 10% of prostate cancer cases are believed to be primarily caused by high-risk inherited genetic factors or prostate cancer susceptibility genes. Case-control studies, linkage analyses, admixture mapping and genome-wide association studies (GWAS) have identified a number of candidate genes associated with prostate cancer susceptibility; however, the replication of these findings remains inconsistent, with numerous genes likely to be involved. Studies of ethnic and founder populations have identified inherited genetic factors associated with a higher risk of prostate cancer. These include the African-American population and 8q24 locus, the Ashkenazi Jewish and BRCA gene mutations and Northern Europeans and the HOXB13 gene. Furthermore, prostate cancer risk appears to be increased by the loss of effective DNA repair processes which occurs in populations with BRCA gene mutations, Lynch syndrome and Fanconi anaemia. Tumours with a disrupted DNA repair pathway are hypersensitive to PARP inhibitors, and these agents have been shown to be efficacious in prostate cancer. The formation of DNA adducts can lead to DNA replication errors and the potential for carcinogenesis; however, whether ethnicity or an inherited susceptibility is associated with an increased risk of prostate cancer is uncertain. Genes identified through GWAS may have a role in prostate cancer screening and as targets for therapeutic targets.

Keywords

Prostate cancer Hereditary BRCA1 BRCA2 HOXB13 Lynch syndrome MSH2 PARP1 Fanconi anaemia DNA adducts 

References

  1. 1.
    Nelson WG, De Marzo AM, Isaacs WB. Prostate cancer. N Engl J Med. 2003;349:366–81.PubMedCrossRefGoogle Scholar
  2. 2.
    Bartsch G, Horninger W, Klocker H, Reissigl A, Oberaigner W, Schonitzer D, Severi G, Robertson C, Boyle P. Prostate cancer mortality after introduction of prostate-specific antigen mass screening in the Federal State of Tyrol, Austria. Urology. 2001;58:417–24.PubMedCrossRefGoogle Scholar
  3. 3.
    Gann PH. Risk factors for prostate cancer. Rev Urol. 2002;4:S3–S10.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Eeles R, Goh C, Castro E, Bancroft E, Guy M, Olama AAA, Easton D, Kote-Jarai Z. The genetic epidemiology of prostate cancer and its clinical implications. Nat Rev Urol. 2014;11:18–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Watkins Bruner D, Moore D, Parlanti A, Dorgan J, Engstrom P. Relative risk of prostate cancer for men with affected relatives: systematic review and meta-analysis. Int J Cancer. 2003;107:797–803.CrossRefGoogle Scholar
  6. 6.
    Zeegers MP, Jellema A, Ostrer H. Empiric risk of prostate carcinoma for relatives of patients with prostate carcinoma: a meta-analysis. Cancer. 2003;97:1894–903.PubMedCrossRefGoogle Scholar
  7. 7.
    Hemminki K, Czene K. Age specific and attributable risks of familial prostate carcinoma from the family-cancer database. Cancer. 2002;95:1346–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343:78–85.PubMedCrossRefGoogle Scholar
  9. 9.
    Hemminki K, Ji J, Forsti A, Sundquist J, Lenner P. Concordance of survival in family members with prostate cancer. J Clin Oncol. 2008;26:1705–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Kalish LA, McDougal WS, McKinlay JB. Family history and the risk of prostate cancer. Urology. 2000;56:803–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Cerhan JR, Parker AS, Putnam SD, Chiu BC, Lynch CF, Cohen MB, Torner JC, Cantor KP. Family history and prostate cancer risk in a population-based cohort of Iowa men. Cancer Epidemiol Biomarkers Prev. 1999;8:53–60.PubMedGoogle Scholar
  12. 12.
    Bratt O, Garmo H, Adolfsson J, Bill-Axelson A, Holmberg L, Lambe M, Stattin P. Effects of prostate-specific antigen testing on familial prostate cancer risk estimates. J Natl Cancer Inst. 2010;102:1336–43.PubMedCrossRefGoogle Scholar
  13. 13.
    Steinberg GD, Carter BS, Beaty TH, Childs B, Walsh PC. Family history and the risk of prostate cancer. Prostate. 1990;17:337–47.PubMedCrossRefGoogle Scholar
  14. 14.
    Carter BS, Beaty TH, Steinberg GD, Childs B, Walsh PC. Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci U S A. 1992;89:3367–71.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ghadirian P, Howe GR, Hislop TG, Maisonneuve P. Family history of prostate cancer: a multi-center case-control study in Canada. Int J Cancer. 1997;70:679–81.PubMedCrossRefGoogle Scholar
  16. 16.
    Smith JR, Freije D, Carpten JD, Gronberg H, Xu J, Isaacs SD, Brownstein MJ, Bova GS, Guo H, Bujnovszky P, et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science. 1996;274:1371–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Berthon P, Valeri A, Cohen-Akenine A, Drelon E, Paiss T, Wohr G, Latil A, Millasseau P, Mellah I, Cohen N, et al. Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2-43. Am J Hum Genet. 1998;62:1416–24.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Xu J, Meyers D, Freije D, Isaacs S, Wiley K, Nusskern D, Ewing C, Wilkens E, Bujnovszky P, Bova GS, et al. Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet. 1998;20:175–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Gibbs M, Stanford JL, McIndoe RA, Jarvik GP, Kolb S, Goode EL, Chakrabarti L, Schuster EF, Buckley VA, Miller EL, et al. Evidence for a rare prostate cancer-susceptibility locus at chromosome 1p36. Am J Hum Genet. 1999;64:776–87.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Berry R, Schroeder JJ, French AJ, McDonnell SK, Peterson BJ, Cunningham JM, Thibodeau SN, Schaid DJ. Evidence for a prostate cancer-susceptibility locus on chromosome 20. Am J Hum Genet. 2000;67:82–91.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Tavtigian SV, Simard J, Teng DH, Abtin V, Baumgard M, Beck A, Camp NJ, Carillo AR, Chen Y, Dayananth P, et al. A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet. 2001;27:172–80.PubMedCrossRefGoogle Scholar
  22. 22.
    Lu L, Cancel-Tassin G, Valeri A, Cussenot O, Lange EM, Cooney KA, Farnham JM, Camp NJ, Cannon-Albright LA, Tammela TL, et al. Chromosomes 4 and 8 implicated in a genome wide SNP linkage scan of 762 prostate cancer families collected by the ICPCG. Prostate. 2012;72:410–26.PubMedCrossRefGoogle Scholar
  23. 23.
    Xu J, Zheng SL, Komiya A, Mychaleckyj JC, Isaacs SD, Hu JJ, Sterling D, Lange EM, Hawkins GA, Turner A, et al. Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet. 2002;32:321–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Chang BL, Liu W, Sun J, Dimitrov L, Li T, Turner AR, Zheng SL, Isaacs WB, Xu J. Integration of somatic deletion analysis of prostate cancers and germline linkage analysis of prostate cancer families reveals two small consensus regions for prostate cancer genes at 8p. Cancer Res. 2007;67:4098–103.PubMedCrossRefGoogle Scholar
  25. 25.
    Xu J, Dimitrov L, Chang BL, Adams TS, Turner AR, Meyers DA, Eeles RA, Easton DF, Foulkes WD, Simard J, et al. A combined genomewide linkage scan of 1,233 families for prostate cancer-susceptibility genes conducted by the international consortium for prostate cancer genetics. Am J Hum Genet. 2005;77:219–29.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    El Gammal AT, Bruchmann M, Zustin J, Isbarn H, Hellwinkel OJ, Kollermann J, Sauter G, Simon R, Wilczak W, Schwarz J, et al. Chromosome 8p deletions and 8q gains are associated with tumor progression and poor prognosis in prostate cancer. Clin Cancer Res. 2010;16:56–64.PubMedCrossRefGoogle Scholar
  27. 27.
    Edwards BK, Brown ML, Wingo PA, Howe HL, Ward E, Ries LA, Schrag D, Jamison PM, Jemal A, XC W, et al. Annual report to the nation on the status of cancer, 1975-2002, featuring population-based trends in cancer treatment. J Natl Cancer Inst. 2005;97:1407–27.PubMedCrossRefGoogle Scholar
  28. 28.
    Freedman ML, Haiman CA, Patterson N, McDonald GJ, Tandon A, Waliszewska A, Penney K, Steen RG, Ardlie K, John EM, et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African—American men. Proc Natl Acad Sci U S A. 2006;103:14068–73.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Han Y, Signorello LB, Strom SS, Kittles RA, Rybicki BA, Stanford JL, Goodman PJ, Berndt SI, Carpten J, Casey G, et al. Generalizability of established prostate cancer risk variants in men of African ancestry. Int J Cancer. 2015;136:1210–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Bock CH, Schwartz AG, Ruterbusch JJ, Levin AM, Neslund-Dudas C, Land SJ, Wenzlaff AS, Reich D, McKeigue P, Chen W, et al. Results from a prostate cancer admixture mapping study in African-American men. Hum Genet. 2009;126:637–42.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kirchhoff T, Kauff ND, Mitra N, Nafa K, Huang H, Palmer C, Gulati T, Wadsworth E, Donat S, Robson ME, et al. BRCA mutations and risk of prostate cancer in Ashkenazi Jews. Clin Cancer Res. 2004;10:2918–21.PubMedCrossRefGoogle Scholar
  32. 32.
    Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C, et al. The genomic complexity of primary human prostate cancer. Nature. 2011;470:214–20.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ford D, Easton DF, Bishop DT, Narod SA, Goldgar DE. Risks of cancer in BRCA1-mutation carriers. Breast cancer linkage consortium. Lancet. 1994;343:692–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Edwards SM, Kote-Jarai Z, Meitz J, Hamoudi R, Hope Q, Osin P, Jackson R, Southgate C, Singh R, Falconer A, et al. Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet. 2003;72:1–12.PubMedCrossRefGoogle Scholar
  35. 35.
    Dong X, Wang L, Taniguchi K, Wang X, Cunningham JM, McDonnell SK, Qian C, Marks AF, Slager SL, Peterson BJ, et al. Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet. 2003;72:270–80.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hale V, Weischer M, Park JY. CHEK2 ( *) 1100delC mutation and risk of prostate cancer. Prostate Cancer. 2014;294575:6.Google Scholar
  37. 37.
    Abate-Shen C, Shen MM, Gelmann E. Integrating differentiation and cancer: the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Differentiation. 2008;76:717–27.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Callen DF, Ricciardelli C, Butler M, Stapleton A, Stahl J, Kench JG, Horsfall DJ, Tilley WD, Schulz R, Nesland JM, et al. Co-expression of the androgen receptor and the transcription factor ZNF652 is related to prostate cancer outcome. Oncol Rep. 2010;23:1045–52.PubMedCrossRefGoogle Scholar
  39. 39.
    Olsson P, Motegi A, Bera TK, Lee B, Pastan I. PRAC2: a new gene expressed in human prostate and prostate cancer. Prostate. 2003;56:123–30.PubMedCrossRefGoogle Scholar
  40. 40.
    Nurminen R, Lehtonen R, Auvinen A, Tammela TL, Wahlfors T, Schleutker J. Fine mapping of 11q13.5 identifies regions associated with prostate cancer and prostate cancer death. Eur J Cancer. 2013;49:3335–43.PubMedCrossRefGoogle Scholar
  41. 41.
    Chiam K, Ryan NK, Ricciardelli C, Day TK, Buchanan G, Ochnik AM, Murti K, Selth LA, Butler LM, Tilley WD, Bianco-Miotto T. Characterization of the prostate cancer susceptibility gene KLF6 in human and mouse prostate cancers. Prostate. 2013;73:182–93.PubMedCrossRefGoogle Scholar
  42. 42.
    FitzGerald LM, Thomson R, Polanowski A, Patterson B, McKay JD, Stankovich J, Dickinson JL. Sequence variants of alpha-methylacyl-CoA racemase are associated with prostate cancer risk: a replication study in an ethnically homogeneous population. Prostate. 2008;68:1373–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Cybulski C, Wokolorczyk D, Kluzniak W, Jakubowska A, Gorski B, Gronwald J, Huzarski T, Kashyap A, Byrski T, Debniak T, et al. An inherited NBN mutation is associated with poor prognosis prostate cancer. Br J Cancer. 2013;108:461–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Cicek MS, Conti DV, Curran A, Neville PJ, Paris PL, Casey G, Witte JS. Association of prostate cancer risk and aggressiveness to androgen pathway genes: SRD5A2, CYP17, and the AR. Prostate. 2004;59:69–76.PubMedCrossRefGoogle Scholar
  45. 45.
    Holt SK, Kwon EM, Fu R, Kolb S, Feng Z, Ostrander EA, Stanford JL. Association of variants in estrogen-related pathway genes with prostate cancer risk. Prostate. 2013;73:1–10.PubMedCrossRefGoogle Scholar
  46. 46.
    Qiu LX, Li RT, Zhang JB, Zhong WZ, Bai JL, Liu BR, Zheng MH, Qian XP. The E-cadherin (CDH1)—160 C/A polymorphism and prostate cancer risk: a meta-analysis. Eur J Hum Genet. 2009;17:244–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Hoffmann TJ, Passarelli MN, Graff RE, Emami NC, Sakoda LC, Jorgenson E, Habel LA, Shan J, Ranatunga DK, Quesenberry CP, et al. Genome-wide association study of prostate-specific antigen levels identifies novel loci independent of prostate cancer. Nat Commun. 2017;8:14248.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Berndt SI, Wang Z, Yeager M, Alavanja MC, Albanes D, Amundadottir L, Andriole G, Beane Freeman L, Campa D, Cancel-Tassin G, et al. Two susceptibility loci identified for prostate cancer aggressiveness. Nat Commun. 2015;6:6889.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, Guy M, Jugurnauth SK, Mulholland S, Leongamornlert DA, Edwards SM, Morrison J, et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet. 2008;40:316–21.PubMedCrossRefGoogle Scholar
  50. 50.
    Eeles RA, Olama AA, Benlloch S, Saunders EJ, Leongamornlert DA, Tymrakiewicz M, Ghoussaini M, Luccarini C, Dennis J, Jugurnauth-Little S, et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat Genet. 2013;45:385–91.PubMedCrossRefGoogle Scholar
  51. 51.
    Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N, Yu K, Chatterjee N, Welch R, Hutchinson A, et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet. 2008;40:310–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Sun J, Zheng SL, Wiklund F, Isaacs SD, Purcell LD, Gao Z, Hsu FC, Kim ST, Liu W, Zhu Y, et al. Evidence for two independent prostate cancer risk-associated loci in the HNF1B gene at 17q12. Nat Genet. 2008;40:1153–5.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yeager M, Deng Z, Boland J, Matthews C, Bacior J, Lonsberry V, Hutchinson A, Burdett LA, Qi L, Jacobs KB, et al. Comprehensive resequence analysis of a 97 kb region of chromosome 10q11.2 containing the MSMB gene associated with prostate cancer. Hum Genet. 2009;126:743–50.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266:66–71.PubMedCrossRefGoogle Scholar
  55. 55.
    Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D, Collins N, Nguyen K, Seal S, Tran T, Averill D, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science. 1994;265:2088–90.PubMedCrossRefGoogle Scholar
  56. 56.
    Dan R, Van Allen EM, Y-M W, Schultz N, Lonigro RJ, Mosquera J-M, Montgomery B, Taplin M-E, Pritchard CC, Attard G, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161:1215–28.PubMedCentralCrossRefGoogle Scholar
  57. 57.
    Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC. Linkage of early-onset familial breast cancer to chromosome 17q21. Science. 1990;250:1684.PubMedCrossRefGoogle Scholar
  58. 58.
    Gudmundsdottir K, Ashworth A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene. 2006;25:5864–74.PubMedCrossRefGoogle Scholar
  59. 59.
    Boulton SJ. Cellular functions of the BRCA tumour-suppressor proteins. Biochem Soc Trans. 2006;34:633–45.PubMedCrossRefGoogle Scholar
  60. 60.
    Venkitaraman AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell. 2002;108:171–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Turner N, Tutt A, Ashworth A. Hallmarks of 'BRCAness' in sporadic cancers. Nat Rev Cancer. 2004;4:814–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Chen S, Parmigiani G. Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol. 2007;25:1329–33.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Agalliu I, Gern R, Leanza S, Burk RD. Associations of high-grade prostate cancer with BRCA1 and BRCA2 founder mutations. Clin Cancer Res. 2009;15:1112–20.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Gallagher DJ, Gaudet MM, Pal P, Kirchhoff T, Balistreri L, Vora K, Bhatia J, Stadler Z, Fine SW, Reuter V, et al. Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res. 2010;16:2115–21.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Thompson D, Easton D. Variation in cancer risks, by mutation position, in BRCA2 mutation carriers. Am J Hum Genet. 2001;68:410–9.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Giusti RM, Rutter JL, Duray PH, Freedman LS, Konichezky M, Fisher-Fischbein J, Greene MH, Maslansky B, Fischbein A, Gruber SB, et al. A twofold increase in BRCA mutation related prostate cancer among Ashkenazi Israelis is not associated with distinctive histopathology. J Med Genet. 2003;40:787–92.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Eerola H, Pukkala E, Pyrhönen S, Blomqvist C, Sankila R, Nevanlinna H. Risk of cancer in BRCA1 and BRCA2 mutation-positive and -negative breast cancer families (Finland). Cancer Causes Control. 2001;12:739–46.PubMedCrossRefGoogle Scholar
  68. 68.
    Leongamornlert D, Mahmud N, Tymrakiewicz M, Saunders E, Dadaev T, Castro E, Goh C, Govindasami K, Guy M, O'Brien L, et al. Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer. 2012;106:1697–701.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Johannesdottir G, Gudmundsson J, Bergthorsson JT, Arason A, Agnarsson BA, Eiriksdottir G, Johannsson OT, Borg A, Ingvarsson S, Easton DF, et al. High prevalence of the 999del5 mutation in icelandic breast and ovarian cancer patients. Cancer Res. 1996;56:3663–5.PubMedGoogle Scholar
  70. 70.
    Kote-Jarai Z, Leongamornlert D, Saunders E, Tymrakiewicz M, Castro E, Mahmud N, Guy M, Edwards S, O'Brien L, Sawyer E, et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br J Cancer. 2011;105:1230–4.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst. 1999;91:1310–6.CrossRefGoogle Scholar
  72. 72.
    Agalliu I, Kwon EM, Zadory D, McIntosh L, Thompson J, Stanford JL, Ostrander EA. Germline mutations in the BRCA2 gene and susceptibility to hereditary prostate cancer. Clin Cancer Res. 2007;13:839–43.PubMedCrossRefGoogle Scholar
  73. 73.
    Thompson D, Easton DF. Cancer Incidence in BRCA1 mutation carriers. J Natl Cancer Inst. 2002;94:1358–65.PubMedCrossRefGoogle Scholar
  74. 74.
    Mitra A, Fisher C, Foster CS, Jameson C, Barbachanno Y, Bartlett J, Bancroft E, Doherty R, Kote-Jarai Z, Peock S, et al. Prostate cancer in male BRCA1 and BRCA2 mutation carriers has a more aggressive phenotype. Br J Cancer. 2008;98:502–7.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Castro E, Goh C, Leongamornlert D, Saunders E, Tymrakiewicz M, Dadaev T, Govindasami K, Guy M, Ellis S, Frost D, et al. Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. Eur Urol. 2015;68:186–93.PubMedCrossRefGoogle Scholar
  76. 76.
    Castro E, Goh C, Olmos D, Saunders E, Leongamornlert D, Tymrakiewicz M, Mahmud N, Dadaev T, Govindasami K, Guy M, et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol. 2013;31:1748–57.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Tryggvadottir L, Vidarsdottir L, Thorgeirsson T, Jonasson JG, Olafsdottir EJ, Olafsdottir GH, Rafnar T, Thorlacius S, Jonsson E, Eyfjord JE, Tulinius H. Prostate cancer progression and survival in BRCA2 mutation carriers. J Natl Cancer Inst. 2007;99:929–35.PubMedCrossRefGoogle Scholar
  78. 78.
    Narod SA, Neuhausen S, Vichodez G, Armel S, Lynch HT, Ghadirian P, Cummings S, Olopade O, Stoppa-Lyonnet D, Couch F, et al. Rapid progression of prostate cancer in men with a BRCA2 mutation. Br J Cancer. 2008;99:371–4.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Bancroft EK, Page EC, Castro E, Lilja H, Vickers A, Sjoberg D, Assel M, Foster CS, Mitchell G, Drew K, et al. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the IMPACT study. Eur Urol. 2014;66:489–99.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Francis JC, McCarthy A, Thomsen MK, Ashworth A, Swain A. Brca2 and Trp53 deficiency cooperate in the progression of mouse prostate tumourigenesis. PLoS Genet. 2010;6:e1000995.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Bednarz N, Eltze E, Semjonow A, Rink M, Andreas A, Mulder L, Hannemann J, Fisch M, Pantel K, Weier HU, et al. BRCA1 loss preexisting in small subpopulations of prostate cancer is associated with advanced disease and metastatic spread to lymph nodes and peripheral blood. Clin Cancer Res. 2010;16:3340–8.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Moro L, Arbini AA, Yao JL, di Sant'Agnese PA, Marra E, Greco M. Loss of BRCA2 promotes prostate cancer cell invasion through up-regulation of matrix metalloproteinase-9. Cancer Sci. 2008;99:553–63.PubMedCrossRefGoogle Scholar
  83. 83.
    Schmidt H, DeAngelis G, Eltze E, Gockel I, Semjonow A, Brandt B. Asynchronous growth of prostate cancer is reflected by circulating tumor cells delivered from distinct, even small foci, harboring loss of heterozygosity of the PTEN gene. Cancer Res. 2006;66:8959–65.PubMedCrossRefGoogle Scholar
  84. 84.
    Lee JM, Ledermann JA, Kohn EC. PARP inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies. Ann Oncol. 2014;25:32–40.PubMedCrossRefGoogle Scholar
  85. 85.
    O’Sullivan CC, Moon DH, Kohn EC, Lee J-M. Beyond breast and ovarian cancers: PARP inhibitors for BRCA mutation-associated and BRCA-like solid tumors. Front Oncol. 2014;4:42.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.PubMedCrossRefGoogle Scholar
  87. 87.
    Howard SM, Yanez DA, Stark JM. DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining. PLoS Genet. 2015;11:e1004943.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Beck C, Boehler C, Guirouilh Barbat J, Bonnet M-E, Illuzzi G, Ronde P, Gauthier LR, Magroun N, Rajendran A, Lopez BS, et al. PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways. Nucleic Acids Res. 2014;42:5616–32.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lombardi AJ, Hoskins EE, Foglesong GD, Wikenheiser-Brokamp KA, Wiesmuller L, Hanenberg H, Andreassen PR, Jacobs AJ, Olson SB, Keeble WW, et al. Acquisition of relative interstrand crosslinker resistance and PARP inhibitor sensitivity in Fanconi Anemia head and neck cancers. Clin Cancer Res. 2015;21:21.CrossRefGoogle Scholar
  90. 90.
    Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, Asangani IA, Patel S, Wang X, Liang H, Yu J, et al. Mechanistic rationale for inhibition of Poly(ADP-Ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell. 2011;19:664–78.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Schiewer MJ, Goodwin JF, Han S, Brenner JC, Augello MA, Dean JL, Liu F, Planck JL, Ravindranathan P, Chinnaiyan AM, et al. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov. 2012;2:1134–49.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Sandhu SK, Schelman WR, Wilding G, Moreno V, Baird RD, Miranda S, Hylands L, Riisnaes R, Forster M, Omlin A, et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2013;14:882–92.PubMedCrossRefGoogle Scholar
  93. 93.
    Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, Nava Rodrigues D, Robinson D, Omlin A, Tunariu N, et al. DNA-repair defects and Olaparib in metastatic prostate cancer. N Engl J Med. 2015;373:1697–708.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Konecny GE, Kristeleit RS. PARP inhibitors for BRCA1/2-mutated and sporadic ovarian cancer: current practice and future directions. Br J Cancer. 2016;115:1157–73.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Li R, Wheeler T, Dai H, Frolov A, Thompson T, Ayala G. High level of androgen receptor is associated with aggressive clinicopathologic features and decreased biochemical recurrence-free survival in prostate: cancer patients treated with radical prostatectomy. Am J Surg Pathol. 2004;28:928–34.PubMedCrossRefGoogle Scholar
  96. 96.
    Fromont G, Yacoub M, Valeri A, Mangin P, Vallancien G, Cancel-Tassin G, Cussenot O. Differential expression of genes related to androgen and estrogen metabolism in hereditary versus sporadic prostate cancer. Cancer Epidemiol Biomarkers Prev. 2008;17:1505–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Giovannucci E, Stampfer MJ, Krithivas K, Brown M, Dahl D, Brufsky A, Talcott J, Hennekens CH, Kantoff PW. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci U S A. 1997;94:3320–3.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lange EM, Sarma AV, Ray A, Wang Y, Ho LA, Anderson SA, Cunningham JM, Cooney KA. The androgen receptor CAG and GGN repeat polymorphisms and prostate cancer susceptibility in African-American men: results from the Flint Men's Health Study. J Hum Genet. 2008;53:220–6.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Mononen N, Syrjakoski K, Matikainen M, Tammela TL, Schleutker J, Kallioniemi OP, Trapman J, Koivisto PA. Two percent of Finnish prostate cancer patients have a germ-line mutation in the hormone-binding domain of the androgen receptor gene. Cancer Res. 2000;60:6479–81.PubMedGoogle Scholar
  100. 100.
    Koivisto PA, Hyytinen ER, Matikainen M, Tammela TL, Ikonen T, Schleutker J. Germline mutation analysis of the androgen receptor gene in Finnish patients with prostate cancer. J Urol. 2004;171:431–3.PubMedCrossRefGoogle Scholar
  101. 101.
    Squire J, Zhou A, Hassel BA, Nie H, Silverman RH. Localization of the interferon-induced, 2-5A-dependent RNase gene (RNS4) to human chromosome 1q25. Genomics. 1994;19:174–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Malathi K, Paranjape JM, Ganapathi R, Silverman RH. HPC1/RNASEL mediates apoptosis of prostate cancer cells treated with 2′,5′-oligoadenylates, topoisomerase I inhibitors, and tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res. 2004;64:9144–51.PubMedCrossRefGoogle Scholar
  103. 103.
    Carpten J, Nupponen N, Isaacs S, Sood R, Robbins C, Xu J, Faruque M, Moses T, Ewing C, Gillanders E, et al. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet. 2002;30:181–4.PubMedCrossRefGoogle Scholar
  104. 104.
    Casey G, Neville PJ, Plummer SJ, Xiang Y, Krumroy LM, Klein EA, Catalona WJ, Nupponen N, Carpten JD, Trent JM, et al. RNASEL Arg462Gln variant is implicated in up to 13% of prostate cancer cases. Nat Genet. 2002;32:581–3.PubMedCrossRefGoogle Scholar
  105. 105.
    Rennert H, Bercovich D, Hubert A, Abeliovich D, Rozovsky U, Bar-Shira A, Soloviov S, Schreiber L, Matzkin H, Rennert G, et al. A novel founder mutation in the RNASEL gene, 471delAAAG, is associated with prostate cancer in Ashkenazi Jews. Am J Hum Genet. 2002;71:981–4.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Robbins CM, Hernandez W, Ahaghotu C, Bennett J, Hoke G, Mason T, Pettaway CA, Vijayakumar S, Weinrich S, Furbert-Harris P, et al. Association of HPC2/ELAC2 and RNASEL non-synonymous variants with prostate cancer risk in African American familial and sporadic cases. Prostate. 2008;68:1790–7.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Orr-Urtreger A, Bar-Shira A, Bercovich D, Matarasso N, Rozovsky U, Rosner S, Soloviov S, Rennert G, Kadouri L, Hubert A, et al. RNASEL mutation screening and association study in Ashkenazi and non-Ashkenazi prostate cancer patients. Cancer Epidemiol Biomarkers Prev. 2006;15:474–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Li H, Tai BC. RNASEL gene polymorphisms and the risk of prostate cancer: a meta-analysis. Clin Cancer Res. 2006 Oct 1;12(19):5713–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Meyer MS, Penney KL, Stark JR, Schumacher FR, Sesso HD, Loda M, Fiorentino M, Finn S, Flavin RJ, Kurth T, et al. Genetic variation in RNASEL associated with prostate cancer risk and progression. Carcinogenesis. 2010;31:1597–603.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Chaux A, Albadine R, Toubaji A, Hicks J, Meeker A, Platz EA, De Marzo AM, Netto GJ. Immunohistochemistry for ERG expression as a surrogate for TMPRSS2-ERG fusion detection in prostatic adenocarcinomas. Am J Surg Pathol. 2011;35:1014–20.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Nishijima J, Hara T, Ikemoto K, Oga A, Kobayashi K, Kawai Y, Matsumoto H, Nagao K, Sasaki K, Gkoleizakis V, et al. Clinical significance of ERG rearrangement subtype and its association with increased p53 expression in Japanese and German prostate cancer. Neoplasma. 2015;62:278–87.PubMedCrossRefGoogle Scholar
  112. 112.
    Wang J, Cai Y, Ren C, Ittmann M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res. 2006;66:8347–51.PubMedCrossRefGoogle Scholar
  113. 113.
    Luedeke M, Linnert CM, Hofer MD, Surowy HM, Rinckleb AE, Hoegel J, Kuefer R, Rubin MA, Vogel W, Maier C. Predisposition for TMPRSS2-ERG fusion in prostate cancer by variants in DNA repair genes. Cancer Epidemiol Biomarkers Prev. 2009;18:3030–5.PubMedCrossRefGoogle Scholar
  114. 114.
    Hofer MD, Kuefer R, Maier C, Herkommer K, Perner S, Demichelis F, Paiss T, Vogel W, Rubin MA, Hoegel J. Genome-wide linkage analysis of TMPRSS2-ERG fusion in familial prostate cancer. Cancer Res. 2009;69:640–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Mani RS, Tomlins SA, Callahan K, Ghosh A, Nyati MK, Varambally S, Palanisamy N, Chinnaiyan AM. Induced chromosomal proximity and gene fusions in prostate cancer. Science. 2009;326:1230.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Ewing CM, Ray AM, Lange EM, Zuhlke KA, Robbins CM, Tembe WD, Wiley KE, Isaacs SD, Johng D, Wang Y, et al. Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med. 2012;366:141–9.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Gudmundsson J, Sulem P, Gudbjartsson DF, Masson G, Agnarsson BA, Benediktsdottir KR, Sigurdsson A, Magnusson OT, Gudjonsson SA, Magnusdottir DN, et al. A study based on whole-genome sequencing yields a rare variant at 8q24 associated with prostate cancer. Nat Genet. 2012;44:1326–9.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Stott-Miller M, Karyadi DM, Smith T, Kwon EM, Kolb S, Stanford JL, Ostrander EA. HOXB13 mutations in a population-based, case-control study of prostate cancer. Prostate. 2013;73:634–41.PubMedCrossRefGoogle Scholar
  119. 119.
    Lange EM, Gillanders EM, Davis CC, Brown WM, Campbell JK, Jones M, Gildea D, Riedesel E, Albertus J, Freas-Lutz D, et al. Genome-wide scan for prostate cancer susceptibility genes using families from the University of Michigan prostate cancer genetics project finds evidence for linkage on chromosome 17 near BRCA1. Prostate. 2003;57:326–34.PubMedCrossRefGoogle Scholar
  120. 120.
    Zuhlke KA, Madeoy JJ, Beebe-Dimmer J, White KA, Griffin A, Lange EM, Gruber SB, Ostrander EA, Cooney KA. Truncating BRCA1 mutations are uncommon in a cohort of hereditary prostate cancer families with evidence of linkage to 17q markers. Clin Cancer Res. 2004;10:5975–80.PubMedCrossRefGoogle Scholar
  121. 121.
    Xu J, Lange EM, Lu L, Zheng SL, Wang Z, Thibodeau SN, Cannon-Albright LA, Teerlink CC, Camp NJ, Johnson AM, et al. HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG). Hum Genet. 2013;132:5–14.PubMedCrossRefGoogle Scholar
  122. 122.
    Breyer JP, Avritt TG, McReynolds KM, Dupont WD, Smith JR. Confirmation of the HOXB13 G84E Germline mutation in familial prostate cancer. Cancer Epidemiol Biomarkers Prev. 2012;21:1348–53.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Akbari MR, Trachtenberg J, Lee J, Tam S, Bristow R, Loblaw A, Narod SA, Nam RK. Association between germline HOXB13 G84E mutation and risk of prostate cancer. J Natl Cancer Inst. 2012;104:1260–2.PubMedCrossRefGoogle Scholar
  124. 124.
    Chen Z, Greenwood C, Isaacs WB, Foulkes WD, Sun J, Zheng SL, Condreay LD, Xu J. The G84E mutation of HOXB13 is associated with increased risk for prostate cancer: results from the REDUCE trial. Carcinogenesis. 2013;34:1260–4.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Laitinen VH, Wahlfors T, Saaristo L, Rantapero T, Pelttari LM, Kilpivaara O, Laasanen S-L, Kallioniemi A, Nevanlinna H, Aaltonen L, et al. HOXB13 G84E mutation in Finland: population-based analysis of prostate, breast, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2013;22:452–60.PubMedCrossRefGoogle Scholar
  126. 126.
    Kote-Jarai Z, Mikropoulos C, Leongamornlert DA, Dadaev T, Tymrakiewicz M, Saunders EJ, Jones M, Jugurnauth-Little S, Govindasami K, Guy M, et al. Prevalence of the HOXB13 G84E germline mutation in British men and correlation with prostate cancer risk, tumour characteristics and clinical outcomes. Ann Oncol. 2015;26(4):756–61.PubMedCrossRefGoogle Scholar
  127. 127.
    Karlsson R, Aly M, Clements M, Zheng L, Adolfsson J, Xu J, Gronberg H, Wiklund F. A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk. Eur Urol. 2014;65:169–76.PubMedCrossRefGoogle Scholar
  128. 128.
    MacInnis RJ, Severi G, Baglietto L, Dowty JG, Jenkins MA, Southey MC, Hopper JL, Giles GG. Population-based estimate of prostate cancer risk for carriers of the HOXB13 missense mutation G84E. PLoS One. 2013;8:15.Google Scholar
  129. 129.
    Hoffmann TJ, Sakoda LC, Shen L, Jorgenson E, Habel LA, Liu J, Kvale MN, Asgari MM, Banda Y, Corley D, et al. Imputation of the rare HOXB13 G84E mutation and cancer risk in a large population-based cohort. PLoS Genet. 2015;11:e1004930.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Huang Q, Whitington T, Gao P, Lindberg JF, Yang Y, Sun J, Vaisanen M-R, Szulkin R, Annala M, Yan J, et al. A prostate cancer susceptibility allele at 6q22 increases RFX6 expression by modulating HOXB13 chromatin binding. Nat Genet. 2014;46:126–35.PubMedCrossRefGoogle Scholar
  131. 131.
    Payton S. Prostate cancer: HOXB13 and a SNP collaborate to increase risk. Nat Rev Urol. 2014;11:64.PubMedCrossRefGoogle Scholar
  132. 132.
    Zabalza CV, Adam M, Burdelski C, Wilczak W, Wittmer C, Kraft S, Krech T, Steurer S, Koop C, Hube-Magg C, et al. HOXB13 overexpression is an independent predictor of early PSA recurrence in prostate cancer treated by radical prostatectomy. Oncotarget. 2015;6(14):12822–34.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Papadopoulos N, Lindblom A. Molecular basis of HNPCC: mutations of MMR genes. Hum Mutat. 1997;10:89–99.PubMedCrossRefGoogle Scholar
  134. 134.
    The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.PubMedCentralCrossRefGoogle Scholar
  135. 135.
    Pawlik TM, Raut CP, Rodriguez-Bigas MA. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis Markers. 2004;20:199–206.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Aarnio M, Sankila R, Pukkala E, Salovaara R, Aaltonen LA, de la Chapelle A, Peltomaki P, Mecklin JP, Jarvinen HJ. Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer. 1999;81:214–8.PubMedCrossRefGoogle Scholar
  137. 137.
    Jarvinen HJ, Aarnio M, Mustonen H, Aktan-Collan K, Aaltonen LA, Peltomaki P, De La Chapelle A, Mecklin JP. Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. Gastroenterology. 2000;118:829–34.PubMedCrossRefGoogle Scholar
  138. 138.
    Schmeler KM, Lynch HT, Chen LM, Munsell MF, Soliman PT, Clark MB, Daniels MS, White KG, Boyd-Rogers SG, Conrad PG, et al. Prophylactic surgery to reduce the risk of gynecologic cancers in the Lynch syndrome. N Engl J Med. 2006;354:261–9.PubMedCrossRefGoogle Scholar
  139. 139.
    Ryan S, Jenkins MA, Win AK. Risk of prostate cancer in lynch syndrome: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2014;23:437–49.PubMedCrossRefGoogle Scholar
  140. 140.
    Pande M, Wei C, Chen J, Amos CI, Lynch PM, KH L, Lucio LA, Boyd-Rogers SG, Bannon SA, Mork ME, Frazier ML. Cancer spectrum in DNA mismatch repair gene mutation carriers: results from a hospital based Lynch syndrome registry. Fam Cancer. 2012;11:441–7.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Scott RJ, McPhillips M, Meldrum CJ, Fitzgerald PE, Adams K, Spigelman AD, du Sart D, Tucker K, Kirk J. Hereditary nonpolyposis colorectal cancer in 95 families: differences and similarities between mutation-positive and mutation-negative kindreds. Am J Hum Genet. 2001;68:118–27.PubMedCrossRefGoogle Scholar
  142. 142.
    Raymond VM, Mukherjee B, Wang F, Huang SC, Stoffel EM, Kastrinos F, Syngal S, Cooney KA, Gruber SB. Elevated risk of prostate cancer among men with Lynch syndrome. J Clin Oncol. 2013;31:1713–8.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Haraldsdottir S, Hampel H, Wei L, Wu C, Frankel W, Bekaii-Saab T, de la Chapelle A, Goldberg RM. Prostate cancer incidence in males with Lynch syndrome. Genet Med. 2014;16:553–7.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Dominguez-Valentin M, Joost P, Therkildsen C, Jonsson M, Rambech E, Nilbert M. Frequent mismatch-repair defects link prostate cancer to Lynch syndrome. BMC Urol. 2016;16:15.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    da Silva FC, de Oliveira LP, Santos ÉM, Nakagawa WT, Junior SA, Valentin MD, Rossi BM, de Oliveira Ferreira F. Frequency of extracolonic tumors in Brazilian families with Lynch syndrome: analysis of a hereditary colorectal cancer institutional registry. Fam Cancer. 2010;9:563–70.PubMedCrossRefGoogle Scholar
  146. 146.
    Grindedal EM, Moller P, Eeles R, Stormorken AT, Bowitz-Lothe IM, Landro SM, Clark N, Kvale R, Shanley S, Maehle L. Germ-line mutations in mismatch repair genes associated with prostate cancer. Cancer Epidemiol Biomarkers Prev. 2009;18:2460–7.PubMedCrossRefGoogle Scholar
  147. 147.
    Bauer CM, Ray AM, Halstead-Nussloch BA, Dekker RG, Raymond VM, Gruber SB, Cooney KA. Hereditary prostate cancer as a feature of Lynch syndrome. Fam Cancer. 2011;10:37–42.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Ahman AK, Jonsson BA, Damber JE, Bergh A, Gronberg H. Low frequency of microsatellite instability in hereditary prostate cancer. BJU Int. 2001;87:334–8.PubMedCrossRefGoogle Scholar
  149. 149.
    Win AK, Lindor NM, Young JP, Macrae FA, Young GP, Williamson E, Parry S, Goldblatt J, Lipton L, Winship I, et al. Risks of primary extracolonic cancers following colorectal cancer in lynch syndrome. J Natl Cancer Inst. 2012;104:1363–72.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Engel C, Loeffler M, Steinke V, Rahner N, Holinski-Feder E, Dietmaier W, Schackert HK, Goergens H, von Knebel Doeberitz M, Goecke TO, et al. Risks of less common cancers in proven mutation carriers with lynch syndrome. J Clin Oncol. 2012;30:4409–15.PubMedCrossRefGoogle Scholar
  151. 151.
    Maul JS, Warner NR, Kuwada SK, Burt RW, Cannon-Albright LA. Extracolonic cancers associated with hereditary nonpolyposis colorectal cancer in the Utah Population Database. Am J Gastroenterol. 2006;101:1591–6.PubMedCrossRefGoogle Scholar
  152. 152.
    Maillard F, Manouvrier S, Biardeau X, Ouzzane A, Villers A. Lynch syndrome and risk of prostate cancer; review of the literature. Prog Urol. 2015;29:00002–0.Google Scholar
  153. 153.
    Goecke T, Schulmann K, Engel C, Holinski-Feder E, Pagenstecher C, Schackert HK, Kloor M, Kunstmann E, Vogelsang H, Keller G, et al. Genotype-phenotype comparison of German MLH1 and MSH2 mutation carriers clinically affected with lynch syndrome: a report by the German HNPCC consortium. J Clin Oncol. 2006;24:4285–92.PubMedCrossRefGoogle Scholar
  154. 154.
    Rosty C, Walsh MD, Lindor NM, Thibodeau SN, Mundt E, Gallinger S, Aronson M, Pollett A, Baron JA, Pearson S, et al. High prevalence of mismatch repair deficiency in prostate cancers diagnosed in mismatch repair gene mutation carriers from the colon cancer family registry. Fam Cancer. 2014;13:573–82.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    D'Andrea AD. Susceptibility pathways in Fanconi's anemia and breast cancer. N Engl J Med. 2010;362:1909–19.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Ceccaldi R, Sarangi P, D'Andrea AD. The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol. 2016;17:337–49.PubMedCrossRefGoogle Scholar
  157. 157.
    Alan D, D'Andrea MD. The Fanconi anemia and breast cancer susceptibility pathways. N Engl J Med. 2010;362:1909–19.PubMedCentralCrossRefGoogle Scholar
  158. 158.
    D'Andrea AD. The Fanconi road to cancer. Genes Dev. 2003;17:1933–6.PubMedCrossRefGoogle Scholar
  159. 159.
    Wang W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet. 2007;8:735–48.PubMedCrossRefGoogle Scholar
  160. 160.
    Boisvert RA, Rego MA, Azzinaro PA, Mauro M, Howlett NG. Coordinate nuclear targeting of the FANCD2 and FANCI proteins via a FANCD2 nuclear localization signal. PLoS One. 2013;8(11):e81387.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Kim H, D'Andrea AD. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 2012;26:1393–408.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Jacquemont C, Taniguchi T. The Fanconi anemia pathway and ubiquitin. BMC Biochem. 2007;22.Google Scholar
  163. 163.
    Garcia MJ, Benitez J. The Fanconi anaemia/BRCA pathway and cancer susceptibility. Searching for new therapeutic targets. Clin Transl Oncol. 2008;10:78–84.PubMedCrossRefGoogle Scholar
  164. 164.
    Smogorzewska A, Matsuoka S, Vinciguerra P, McDonald Iii ER, Hurov KE, Luo J, Ballif BA, Gygi SP, Hofmann K, D'Andrea AD, Elledge SJ. Identification of the FANCI protein, a Monoubiquitinated FANCD2 paralog required for DNA Repair. Cell. 2007;129:289–301.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Sy SMH, Huen MSY, Chen J. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci. 2009;106:7155–60.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Moldovan GL, D'Andrea AD. How the fanconi anemia pathway guards the genome. Annu Rev Genet. 2009;43:223–49.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Nijman SM, Huang TT, Dirac AM, Brummelkamp TR, Kerkhoven RM, D'Andrea AD, Bernards R. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell. 2005;17:331–9.PubMedCrossRefGoogle Scholar
  168. 168.
    Oestergaard VH, Langevin F, Kuiken HJ, Pace P, Niedzwiedz W, Simpson LJ, Ohzeki M, Takata M, Sale JE, Patel KJ. Deubiquitination of FANCD2 is required for DNA crosslink repair. Mol Cell. 2007;28:798–809.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Wu W, Togashi Y, Johmura Y, Miyoshi Y, Nobuoka S, Nakanishi M, Ohta T. HP1 regulates the localization of FANCJ at sites of DNA double-strand breaks. Cancer Sci. 2016;107:1406–15.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Michl J, Zimmer J, Tarsounas M. Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO J. 2016;35:909–23.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Brosh RM Jr. DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer. 2013;13:542–58.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Gojo I, Beumer JH, Pratz KW, McDevitt MA, Baer MR, Blackford AL, Smith BD, Gore SD, Carraway HE, Showel MM, et al. A Phase 1 Study of the PARP Inhibitor Veliparib in Combination with Temozolomide in Acute Myeloid Leukemia. Clin Cancer Res. 2017;23:697–706.PubMedCrossRefGoogle Scholar
  173. 173.
    Swift M. Fanconi's anaemia in the genetics of neoplasia. Nature. 1971;230:370–3.PubMedCrossRefGoogle Scholar
  174. 174.
    Swift M, Caldwell RJ, Chase C. Reassessment of cancer predisposition of Fanconi anemia heterozygotes. J Natl Cancer Inst. 1980;65:863–7.PubMedGoogle Scholar
  175. 175.
    Potter NU, Sarmousakis C, Li FP. Cancer in relatives of patients with aplastic anemia. Cancer Genet Cytogenet. 1983;9:61–5.PubMedCrossRefGoogle Scholar
  176. 176.
    Berwick M, Satagopan JM, Ben-Porat L, Carlson A, Mah K, Henry R, Diotti R, Milton K, Pujara K, Landers T, et al. Genetic heterogeneity among Fanconi anemia heterozygotes and risk of cancer. Cancer Res. 2007;67:9591–6.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Tischkowitz M, Easton DF, Ball J, Hodgson SV, Mathew CG. Cancer incidence in relatives of British Fanconi Anaemia patients. BMC Cancer. 2008;8:1471–2407.CrossRefGoogle Scholar
  178. 178.
    Mantere T, Haanpaa M, Hanenberg H, Schleutker J, Kallioniemi A, Kahkonen M, Parto K, Avela K, Aittomaki K, von Koskull H, et al. Finnish Fanconi anemia mutations and hereditary predisposition to breast and prostate cancer. Clin Genet. 2014;2:12447.Google Scholar
  179. 179.
    Mathew CG. Fanconi anaemia genes and susceptibility to cancer. Oncogene. 2006;25:5875–84.PubMedCrossRefGoogle Scholar
  180. 180.
    Tang D, Liu JJ, Rundle A, Neslund-Dudas C, Savera AT, Bock CH, Nock NL, Yang JJ, Rybicki BA. Grilled meat consumption and PhIP-DNA adducts in prostate carcinogenesis. Cancer Epidemiol Biomarkers Prev. 2007;16:803–8.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Rybicki BA, Rundle A, Savera AT, Sankey SS, Tang D. Polycyclic aromatic hydrocarbon-DNA adducts in prostate cancer. Cancer Res. 2004;64:8854–9.PubMedCrossRefGoogle Scholar
  182. 182.
    Rybicki BA, Neslund-Dudas C, Bock CH, Nock NL, Rundle A, Jankowski M, Levin AM, Beebe-Dimmer J, Savera AT, Takahashi S, et al. Red Wine Consumption is inversely associated with 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-DNA Adduct Levels in Prostate. Cancer Prev Res (Philadelphia, PA). 2011;4:1636–44.CrossRefGoogle Scholar
  183. 183.
    Nowell S, Ratnasinghe DL, Ambrosone CB, Williams S, Teague-Ross T, Trimble L, Runnels G, Carrol A, Green B, Stone A, et al. Association of SULT1A1 phenotype and genotype with prostate cancer risk in African-Americans and Caucasians. Cancer Epidemiol Biomarkers Prev. 2004;13:270–6.PubMedCrossRefGoogle Scholar
  184. 184.
    Koike H, Nakazato H, Ohtake N, Matsui H, Okugi H, Shibata Y, Nakata S, Yamanaka H, Suzuki K. Further evidence for null association of phenol sulfotransferase SULT1A1 polymorphism with prostate cancer risk: a case-control study of familial prostate cancer in a Japanese population. Int Urol Nephrol. 2008;40:947–51.PubMedCrossRefGoogle Scholar
  185. 185.
    Tang D, Kryvenko ON, Wang Y, Trudeau S, Rundle A, Takahashi S, Shirai T, Rybicki BA. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-DNA adducts in benign prostate and subsequent risk for prostate cancer. Int J Cancer. 2013;133:961–71.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of HistopathologySt. James’s Hospital and Trinity College DublinDublinIreland

Personalised recommendations