Molecular Targeted Therapies of Prostate Cancer

  • Panagiotis J. Vlachostergios
  • Marcia Paddock
  • Ana M. Molina
Chapter
Part of the Molecular Pathology Library book series (MPLB)

Abstract

Recent advances in androgen deprivation therapies for prostate cancer (PCa) have improved patient outcomes. In addition, metastatic biopsies enable a better molecular characterization of the evolving phenotype and underlying gene alterations. A novel landscape of druggable targets has been unraveled within several aberrant pathways, including androgen receptor (AR) signaling, proliferation, cell cycle progression, angiogenesis, immune evasion, epithelial-mesenchymal transition (EMT), stress response, DNA repair, and epigenetic regulation. The disease upon progression typically remains androgen-driven, but identification of true molecular drivers with direct or indirect association with AR signaling or totally androgen-independent as well as development and validation of surrogate markers of response are areas of active research. A plethora of established and promising new therapeutic strategies have emerged, and identifying the most effective combinations and sequencing is the key to further progress.

Keywords

Molecular target Prostate cancer Androgen signaling Castration resistance Biologic therapy 

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Patrikidou A, Loriot Y, Eymard JC, Albiges L, Massard C, Ileana E, et al. Who dies from prostate cancer? Prostate Cancer Prostatic Dis. 2014;17(4):348–52.PubMedCrossRefGoogle Scholar
  3. 3.
    Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015;15(12):701–11.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hu J, Wang G, Sun T. Dissecting the roles of the androgen receptor in prostate cancer from molecular perspectives. Tumour Biol. 2017;39(5):1010428317692259.  https://doi.org/10.1177/1010428317692259.PubMedCrossRefGoogle Scholar
  5. 5.
    Huggins C, Hodges CV. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J Urol. 2002;168(1):9–12.PubMedCrossRefGoogle Scholar
  6. 6.
    Crawford ED. Hormonal therapy in prostate cancer: historical approaches. Rev Urol. 2004;6(Suppl 7):S3–S11.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Leuprolide Study Group. Leuprolide versus diethylstilbestrol for metastatic prostate cancer. N Engl J Med. 1984;311(20):1281–6.CrossRefGoogle Scholar
  8. 8.
    Labrie F, Dupont A, Belanger A, Lachance R. Flutamide eliminates the risk of disease flare in prostatic cancer patients treated with luteinizing hormone-releasing hormone agonist. J Urol. 1987;138(4):804–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Carter NJ, Keam SJ. Degarelix: a review of its use in patients with prostate cancer. Drugs. 2014;74(6):699–712.PubMedCrossRefGoogle Scholar
  10. 10.
    Klotz L, Boccon-Gibod L, Shore ND, Andreou C, Persson BE, Cantor P, et al. The efficacy and safety of degarelix: a 12-month, comparative, randomized, open-label, parallel-group phase III study in patients with prostate cancer. BJU Int. 2008;102(11):1531–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Sciarra A, Fasulo A, Ciardi A, Petrangeli E, Gentilucci A, Maggi M, et al. A meta-analysis and systematic review of randomized controlled trials with degarelix versus gonadotropin-releasing hormone agonists for advanced prostate cancer. Medicine (Baltimore). 2016;95(27):e3845.  https://doi.org/10.1097/MD.0000000000003845.CrossRefGoogle Scholar
  12. 12.
    Galletti G, Leach BI, Lam L, Tagawa ST. Mechanisms of resistance to systemic therapy in metastatic castration-resistant prostate cancer. Cancer Treat Rev. 2017;57:16–27.PubMedCrossRefGoogle Scholar
  13. 13.
    Vlachostergios PJ, Puca L, Beltran H. Emerging variants of castration-resistant prostate cancer. Curr Oncol Rep. 2017;19(5):32.PubMedCrossRefGoogle Scholar
  14. 14.
    Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351(15):1502–12.PubMedCrossRefGoogle Scholar
  15. 15.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.PubMedCrossRefGoogle Scholar
  16. 16.
    de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011;364(21):1995–2005.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 2013;368(2):138–48.PubMedCrossRefGoogle Scholar
  18. 18.
    Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012 Sep 27;367(13):1187–97.PubMedCrossRefGoogle Scholar
  19. 19.
    Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371(5):424–33.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet. 2010;376(9747):1147–54.PubMedCrossRefGoogle Scholar
  21. 21.
    Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fosså SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–23.PubMedCrossRefGoogle Scholar
  22. 22.
    Kaisary AV, Tyrrell CJ, Beacock C, Lunglmayr G, Debruyne FA. randomised comparison of monotherapy with Casodex 50 mg daily and castration in the treatment of metastatic prostate carcinoma. Casodex Study Group. Eur Urol. 1995;28(3):215–22.PubMedCrossRefGoogle Scholar
  23. 23.
    Iversen P, Tveter K, Varenhorst E. Randomised study of Casodex 50 MG monotherapy vs orchidectomy in the treatment of metastatic prostate cancer. The Scandinavian Casodex Cooperative Group. Scand J Urol Nephrol. 1996;30(2):93–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Steinkamp MP, O’Mahony OA, Brogley M, Rehman H, Lapensee EW, Dhanasekaran S, et al. Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res. 2009;69(10):4434–42.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Lorente D, Mateo J, Zafeiriou Z, Smith AD, Sandhu S, Ferraldeschi R, et al. Switching and withdrawing hormonal agents for castration-resistant prostate cancer. Nat Rev Urol. 2015;12(1):37–47.PubMedCrossRefGoogle Scholar
  26. 26.
    Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science. 2009;324(5928):787–90.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Smith MR, Antonarakis ES, Ryan CJ, Berry WR, Shore N, Liu G, et al. ARN-509 in men with high-risk non-metastatic castration-resistant prostate cancer. J Clin Oncol. 2013;31(6_suppl):7.  https://doi.org/10.1200/jc0.2013.31.6_supp1.7.CrossRefGoogle Scholar
  28. 28.
    Yap TA, Zivi A, Omlin A, de Bono JS. The changing therapeutic landscape of castration-resistant prostate cancer. Nat Rev Clin Oncol. 2011;8(10):597–610.PubMedCrossRefGoogle Scholar
  29. 29.
    Mostaghel EA, Page ST, Lin DW, Fazli L, Coleman IM, True LD, et al. Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res. 2007;67(10):5033–41.PubMedCrossRefGoogle Scholar
  30. 30.
    Stigliano A, Gandini O, Cerquetti L, Gazzaniga P, Misiti S, Monti S, et al. Increased metastatic lymph node 64 and CYP17 expression are associated with high stage prostate cancer. J Endocrinol. 2007;194(1):55–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res. 2006;66(5):2815–25.PubMedCrossRefGoogle Scholar
  32. 32.
    Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 2008;68(11):4447–54.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Potter GA, Barrie SE, Jarman M, Rowlands MG. Novel steroidal inhibitors of human cytochrome P45017 alpha (17 alpha-hydroxylase-C17,20-lyase): potential agents for the treatment of prostatic cancer. J Med Chem. 1995;38(13):2463–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Attard G, Belldegrun AS, de Bono JS. Selective blockade of androgenic steroid synthesis by novel lyase inhibitors as a therapeutic strategy for treating metastatic prostate cancer. BJU Int. 2005;96(9):1241–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Attard G, Reid AH, Olmos D, de Bono JS. Antitumor activity with CYP17 blockade indicates that castration-resistant prostate cancer frequently remains hormone driven. Cancer Res. 2009;69(12):4937–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Danila DC, Morris MJ, de Bono JS, Ryan CJ, Denmeade SR, Smith MR, et al. Phase II multicenter study of abiraterone acetate plus prednisone therapy in patients with docetaxel-treated castration-resistant prostate cancer. J Clin Oncol. 2010;28(9):1496–501.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Fizazi K, Jones R, Oudard S, Efstathiou E, Saad F, de Wit R, et al. Phase III, randomized, double-blind, multicenter trial comparing orteronel (TAK-700) plus prednisone with placebo plus prednisone in patients with metastatic castration-resistant prostate cancer that has progressed during or after docetaxel-based therapy: ELM-PC 5. J Clin Oncol. 2015;33(7):723–31.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Saad F, Fizazi K, Jinga V, Efstathiou E, Fong PC, Hart LL, et al. Orteronel plus prednisone in patients with chemotherapy-naive metastatic castration-resistant prostate cancer (ELM-PC 4): a double-blind, multicentre, phase 3, randomised, placebo-controlled trial. Lancet Oncol. 2015;16(3):338–48.PubMedCrossRefGoogle Scholar
  39. 39.
    Taplin ME, Antonarakis ES, Ferrante KJ, Horgan K, Blumenstein BA, Saad F, et al. Clinical factors associated with AR-V7 detection in ARMOR3-SV, a randomized trial of galeterone (Gal) vs enzalutamide (Enz) in men with AR-V7+ metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2017;35(suppl):abstr 5005.Google Scholar
  40. 40.
    Samson DJ, Seidenfeld J, Schmitt B, Hasselblad V, Albertsen PC, Bennett CL, et al. Systematic review and meta-analysis of monotherapy compared with combined androgen blockade for patients with advanced prostate carcinoma. Cancer. 2002;95(2):361–76.PubMedCrossRefGoogle Scholar
  41. 41.
    Gillessen S, Omlin A, Attard G, de Bono JS, Efstathiou E, Fizazi K, et al. Management of patients with advanced prostate cancer: recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann Oncol. 2015;26(8):1589–604.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Penson DF, Armstrong AJ, Concepcion R, Agarwal N, Olsson C, Karsh L, et al. Enzalutamide versus bicalutamide in castration-resistant prostate cancer: the STRIVE trial. J Clin Oncol. 2016;34(18):2098–106.PubMedCrossRefGoogle Scholar
  43. 43.
    James ND, de Bono JS, Spears MR, Clarke NW, Mason MD, Dearnaley DP, et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med. 2017.  https://doi.org/10.1056/NEJMoa1702900.
  44. 44.
    Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A, Alekseev BY, et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med. 2017.  https://doi.org/10.1056/NEJMoa1704174.
  45. 45.
    James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Spears MR, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet. 2016;387(10024):1163–77.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sweeney CJ, Chen YH, Carducci M, Liu G, Jarrard DF, Eisenberger M, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med. 2015;373(8):737–46.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Gravis G, Fizazi K, Joly F, Oudard S, Priou F, Esterni B, et al. Androgen-deprivation therapy alone or with docetaxel in non-castrate metastatic prostate cancer (GETUG-AFU 15): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14(2):149–58.PubMedCrossRefGoogle Scholar
  48. 48.
    Attard G, Borre M, Gurney H, Loriot Y, Andresen C, Kalleda R, et al. A phase IV, randomized, double-blind, placebo (PBO)-controlled study of continued enzalutamide (ENZA) post prostate-specific antigen (PSA) progression in men with chemotherapy-naive metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2017;35(suppl):abstr 5004.Google Scholar
  49. 49.
    Vlachostergios PJ, Galletti G, Palmer J, Lam L, Karir BS, Tagawa ST. Antibody therapeutics for treating prostate cancer: where are we now and what comes next? Expert Opin Biol Ther. 2017;17(2):135–49.PubMedCrossRefGoogle Scholar
  50. 50.
    Ma D, Hopf CE, Malewicz AD, Donovan GP, Senter PD, Goeckeler WF, et al. Potent antitumor activity of an auristatin-conjugated, fully human monoclonal antibody to prostate-specific membrane antigen. Clin Cancer Res. 2006;12(8):2591–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Petrylak DP, Vogelzang NJ, Chatta GS, Fleming MT, Smith DC, Appleman LJ, et al. A phase 2 study of prostate specific membrane antigen antibody drug conjugate (PSMA ADC) in patients (pts) with progressive metastatic castration-resistant prostate cancer (mCRPC) following abiraterone and/or enzalutamide (abi/enz). J Clin Oncol. 2015;33(suppl 7):abstr 144.CrossRefGoogle Scholar
  52. 52.
    Kratochwil C, Afshar-Oromieh A, Kopka K, Haberkorn U, Giesel FL. Current status of prostate-specific membrane antigen targeting in nuclear medicine: clinical translation of chelator containing prostate-specific membrane antigen ligands into diagnostics and therapy for prostate cancer. Semin Nucl Med. 2016;46(5):405–18.PubMedCrossRefGoogle Scholar
  53. 53.
    Calopedos RJS, Chalasani V, Asher R, Emmett L, Woo HH. Lutetium-177-labelled anti-prostate-specific membrane antigen antibody and ligands for the treatment of metastatic castrate-resistant prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2017.  https://doi.org/10.1038/pcan.2017.23.
  54. 54.
    Robinson D, Van Allen EM, YM W, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015 May 21;161(5):1215–28.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Ferraldeschi R, Nava Rodrigues D, Riisnaes R, Miranda S, Figueiredo I, Rescigno P, et al. PTEN protein loss and clinical outcome from castration-resistant prostate cancer treated with abiraterone acetate. Eur Urol. 2015;67(4):795–802.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Punnoose EA, Ferraldeschi R, Szafer-Glusman E, Tucker EK, Mohan S, Flohr P, et al. PTEN loss in circulating tumour cells correlates with PTEN loss in fresh tumour tissue from castration-resistant prostate cancer patients. Br J Cancer. 2015;113(8):1225–33.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Mulholland DJ, Tran LM, Li Y, Cai H, Morim A, Wang S, et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell. 2011;19(6):792–804.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell. 2011;19(5):575–86.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    De Velasco MA, Kura Y, Yoshikawa K, Nishio K, Davies BR, Uemura H. Efficacy of targeted AKT inhibition in genetically engineered mouse models of PTEN-deficient prostate cancer. Oncotarget. 2016;7(13):15959–76.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Hu Y, Gu Y, Wang H, Huang Y, Zou YM. Integrated network model provides new insights into castration-resistant prostate cancer. Sci Rep. 2015;5:17280.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Gao S, Ye H, Gerrin S, Wang H, Sharma A, Chen S, et al. ErbB2 signaling increases androgen receptor expression in abiraterone-resistant prostate cancer. Clin Cancer Res. 2016;22(14):3672–82.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Toren P, Kim S, Cordonnier T, Crafter C, Davies BR, Fazli L, et al. Combination AZD5363 with enzalutamide significantly delays enzalutamide-resistant prostate cancer in preclinical models. Eur Urol. 2015;67(6):986–90.PubMedCrossRefGoogle Scholar
  63. 63.
    Feng S, Wang J, Zhang Y, Creighton CJ, Ittmann M. FGF23 promotes prostate cancer progression. Oncotarget. 2015;6(19):17291–301.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Toren P, Kim S, Johnson F, Zoubeidi A. Combined AKT and MEK pathway blockade in pre-clinical models of enzalutamide-resistant prostate cancer. PLoS One. 2016;11(4):e0152861.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Park H, Kim Y, Sul JW, Jeong IG, Yi HJ, Ahn JB, et al. Synergistic anticancer efficacy of MEK inhibition and dual PI3K/mTOR inhibition in castration-resistant prostate cancer. Prostate. 2015;75(15):1747–59.PubMedCrossRefGoogle Scholar
  66. 66.
    Templeton AJ, Dutoit V, Cathomas R, Rothermundt C, Bärtschi D, Dröge C, et al. Phase 2 trial of single-agent everolimus in chemotherapy-naive patients with castration-resistant prostate cancer (SAKK 08/08). Eur Urol. 2013;64(1):150–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Nakabayashi M, Werner L, Courtney KD, Buckle G, WK O, Bubley GJ, et al. Phase II trial of RAD001 and bicalutamide for castration-resistant prostate cancer. BJU Int. 2012;110(11):1729–35.PubMedCrossRefGoogle Scholar
  68. 68.
    Courtney KD, Manola JB, Elfiky AA, Ross R, WK O, Yap JT, et al. A phase I study of everolimus and docetaxel in patients with castration-resistant prostate cancer. Clin Genitourin Cancer. 2015;13(2):113–23.PubMedCrossRefGoogle Scholar
  69. 69.
    Yasumizu Y, Miyajima A, Kosaka T, Miyazaki Y, Kikuchi E, Oya M. Dual PI3K/mTOR inhibitor NVP-BEZ235 sensitizes docetaxel in castration resistant prostate cancer. J Urol. 2014;191(1):227–34.PubMedCrossRefGoogle Scholar
  70. 70.
    Kato M, Banuelos CA, Imamura Y, Leung JK, Caley DP, Wang J, et al. Cotargeting androgen receptor splice variants and mTOR signaling pathway for the treatment of castration-resistant prostate cancer. Clin Cancer Res. 2016;22(11):2744–54.PubMedCrossRefGoogle Scholar
  71. 71.
    Mirkheshti N, Park S, Jiang S, Cropper J, Werner SL, Song CS, et al. Dual targeting of androgen receptor and mTORC1 by salinomycin in prostate cancer. Oncotarget. 2016;7(38):62240–54.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hsieh CL, Botta G, Gao S, Li T, Van Allen EM, Treacy DJ, et al. PLZF, a tumor suppressor genetically lost in metastatic castration-resistant prostate cancer, is a mediator of resistance to androgen deprivation therapy. Cancer Res. 2015;75(10):1944–8.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Cao J, Zhu S, Zhou W, Li J, Liu C, Xuan H, et al. PLZF mediates the PTEN/AKT/FOX03a signaling in suppression of prostate tumorigenesis. PLoS One. 2013;8(12):e77922.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Xiao GQ, Unger P, Yang Q, Kinoshita Y, Singh K, McMahon L, et al. Loss of PLZF expression in prostate cancer by immunohistochemistry correlates with tumor aggressiveness and metastasis. PLoS One. 2015;10(3):e0121318.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Luk IS, Shrestha R, Xue H, Wang Y, Zhang F, Lin D, et al. BIRC6 Targeting as Potential Therapy for Advanced, Enzalutamide-Resistant Prostate Cancer. Clin Cancer Res. 2017;23(6):1542–51.PubMedCrossRefGoogle Scholar
  76. 76.
    Barbieri CE, Chinnaiyan AM, Lerner SP, Swanton C, Rubin MA. The emergence of precision urologic oncology: a collaborative review on biomarker-driven therapeutics. Eur Urol. 2017;71(2):237–46.PubMedCrossRefGoogle Scholar
  77. 77.
    Beltran H, Yelensky R, Frampton GM, Park K, Downing SR, MacDonald TY, et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol. 2013;63(5):920–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Grasso CS, YM W, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487(7406):239–43.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N Engl J Med. 2016;375(5):443–53.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Hager S, Ackermann CJ, Joerger M, Gillessen S, Omlin A. Anti-tumour activity of platinum compounds in advanced prostate cancer-a systematic literature review. Ann Oncol. 2016;27(6):975–84.PubMedCrossRefGoogle Scholar
  81. 81.
    Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015;373(18):1697–708.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hussain M, Carducci MA, Slovin S, Cetnar J, Qian J, McKeegan EM, et al. Targeting DNA repair with combination veliparib (ABT-888) and temozolomide in patients with metastatic castration-resistant prostate cancer. Invest New Drugs. 2014;32(5):904–12.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Balmaña J, Tung NM, Isakoff SJ, Graña B, Ryan PD, Saura C, et al. Phase I trial of olaparib in combination with cisplatin for the treatment of patients with advanced breast, ovarian and other solid tumors. Ann Oncol. 2014;25(8):1656–63.PubMedCrossRefGoogle Scholar
  84. 84.
    Ta HQ, Gioeli D. The convergence of DNA damage checkpoint pathways and androgen receptor signaling in prostate cancer. Endocr Relat Cancer. 2014;21(5):R395–407.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Polkinghorn WR, Parker JS, Lee MX, Kass EM, Spratt DE, Iaquinta PJ, et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov. 2013;3(11):1245–53.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Li L, Karanika S, Yang G, Wang J, Park S, Broom BM, et al. Androgen receptor inhibitor-induced “BRCAness” and PARP inhibition are synthetically lethal for castration-resistant prostate cancer. Sci Signal. 2017;10(480):pii: eaam7479.  https://doi.org/10.1126/scisignal.aam7479.CrossRefGoogle Scholar
  87. 87.
    Hussain M, Daignault S, Twardowski P, Albany C, Stein MN, Kunju LP, et al. Abiraterone + prednisone (Abi) +/- veliparib (Vel) for patients (pts) with metastatic castration-resistant prostate cancer (CRPC): NCI 9012 updated clinical and genomics data. J Clin Oncol. 2017;35(suppl):abstr 5001.Google Scholar
  88. 88.
    Reddy V, Wu M, Ciavattone N, McKenty N, Menon M, Barrack ER, et al. ATM inhibition potentiates death of androgen receptor-inactivated prostate cancer cells with telomere dysfunction. J Biol Chem. 2015;290(42):25522–33.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Roudier MP, Winters BR, Coleman I, Lam HM, Zhang X, Coleman R, et al. Characterizing the molecular features of ERG-positive tumors in primary and castration resistant prostate cancer. Prostate. 2016;76(9):810–22.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Saranchova I, Han J, Huang H, Fenninger F, Choi KB, Munro L, et al. Discovery of a metastatic immune escape mechanism initiated by the loss of expression of the tumour biomarker interleukin-33. Sci Rep. 2016;6:30555.  https://doi.org/10.1038/srep30555.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Benzon B, Zhao SG, Haffner MC, Takhar M, Erho N, Yousefi K, et al. Correlation of B7-H3 with androgen receptor, immune pathways and poor outcome in prostate cancer: an expression-based analysis. Prostate Cancer Prostatic Dis. 2017;20(1):28–35.PubMedCrossRefGoogle Scholar
  92. 92.
    Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, et al. Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol. 2010;28(7):1099–105.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lin AY, Lin E. Programmed death 1 blockade, an Achilles heel for MMR-deficient tumors? J Hematol Oncol. 2015;8:124.  https://doi.org/10.1186/s13045–015–0222–5.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Graff JN, Alumkal JJ, Drake CG, Thomas GV, Redmond WL, Farhad M, et al. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget. 2016;7(33):52810–7.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Goswami S, Aparicio A, Subudhi SK. Immune checkpoint therapies in prostate cancer. Cancer J. 2016;22(2):117–20.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Clermont PL, Crea F, Chiang YT, Lin D, Zhang A, Wang JZ, et al. Identification of the epigenetic reader CBX2 as a potential drug target in advanced prostate cancer. Clin Epigenetics. 2016;8:16.  https://doi.org/10.1186/s13148–016–0182–9.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22(3):298–305.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, Puca L, et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell. 2016;30(4):563–77.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Fong KW, Zhao JC, Kim J, Li S, Yang YA, Song B, et al. Polycomb-mediated disruption of an androgen receptor feedback loop drives castration-resistant prostate cancer. Cancer Res. 2017;77(2):412–22.PubMedCrossRefGoogle Scholar
  100. 100.
    Lu W, Liu S, Li B, Xie Y, Izban MG, Ballard BR, et al. SKP2 loss destabilizes EZH2 by promoting TRAF6-mediated ubiquitination to suppress prostate cancer. Oncogene. 2017;36(10):1364–73.PubMedCrossRefGoogle Scholar
  101. 101.
    Kong D, Sethi S, Li Y, Chen W, Sakr WA, Heath E, et al. Androgen receptor splice variants contribute to prostate cancer aggressiveness through induction of EMT and expression of stem cell marker genes. Prostate. 2015;75(2):161–74.PubMedCrossRefGoogle Scholar
  102. 102.
    Ware KE, Somarelli JA, Schaeffer D, Li J, Zhang T, Park S, et al. Snail promotes resistance to enzalutamide through regulation of androgen receptor activity in prostate cancer. Oncotarget. 2016;7(31):50507–21.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Haider M, Zhang X, Coleman I, Ericson N, True LD, Lam HM, et al. Epithelial mesenchymal-like transition occurs in a subset of cells in castration resistant prostate cancer bone metastases. Clin Exp Metastasis. 2016;33(3):239–48.PubMedCrossRefGoogle Scholar
  104. 104.
    Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 2017;355(6320):84–8.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Stoyanova T, Riedinger M, Lin S, Faltermeier CM, Smith BA, Zhang KX, et al. Activation of Notch1 synergizes with multiple pathways in promoting castration-resistant prostate cancer. Proc Natl Acad Sci U S A. 2016;113(42):E6457–66.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Wu H, Zhang L, Gao X, Zhang X, Duan J, You L, et al. Combination of sorafenib and enzalutamide as a potential new approach for the treatment of castration-resistant prostate cancer. Cancer Lett. 2017;385:108–16.PubMedCrossRefGoogle Scholar
  107. 107.
    Ruscetti M, Dadashian EL, Guo W, Quach B, Mulholland DJ, Park JW, et al. HDAC inhibition impedes epithelial-mesenchymal plasticity and suppresses metastatic, castration-resistant prostate cancer. Oncogene. 2016;35(29):3781–95.PubMedCrossRefGoogle Scholar
  108. 108.
    Martin SK, Pu H, Penticuff JC, Cao Z, Horbinski C, Kyprianou N. Multinucleation and mesenchymal-to-epithelial transition alleviate resistance to combined cabazitaxel and antiandrogen therapy in advanced prostate cancer. Cancer Res. 2016;76(4):912–26.PubMedCrossRefGoogle Scholar
  109. 109.
    Sabnis NG, Miller A, Titus MA, Huss WJ. The efflux transporter ABCG2 maintains prostate stem cells. Mol Cancer Res. 2017;15(2):128–40.PubMedCrossRefGoogle Scholar
  110. 110.
    Pakula H, Xiang D, Li Z. A tale of two signals: AR and WNT in development and tumorigenesis of prostate and mammary gland. Cancer. 2017;9(2):pii: E14.  https://doi.org/10.3390/cancers9020014.CrossRefGoogle Scholar
  111. 111.
    Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, et al. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci U S A. 2013;110(50):20224–9.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Di Lorenzo G, Figg WD, Fossa SD, Mirone V, Autorino R, Longo N, et al. Combination of bevacizumab and docetaxel in docetaxel-pretreated hormone-refractory prostate cancer: a phase 2 study. Eur Urol. 2008;54(5):1089–94.PubMedCrossRefGoogle Scholar
  113. 113.
    Kelly WK, Halabi S, Carducci M, George D, Mahoney JF, Stadler WM, et al. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J Clin Oncol. 2012;30(13):1534–40.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Derleth CL, Yu EY. Targeted therapy in the treatment of castration-resistant prostate cancer. Oncology (Williston Park). 2013;27(7):620–8.Google Scholar
  115. 115.
    Smith M, De Bono J, Sternberg C, Le Moulec S, Oudard S, De Giorgi U, et al. Phase III study of cabozantinib in previously treated metastatic castration-resistant prostate cancer: COMET-1. J Clin Oncol. 2016;34(25):3005–13.PubMedCrossRefGoogle Scholar
  116. 116.
    Tong D, Liu Q, Liu G, Yuan W, Wang L, Guo Y, et al. The HIF/PHF8/AR axis promotes prostate cancer progression. Oncogenesis. 2016;5(12):e283.  https://doi.org/10.1038/oncsis.2016.74.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Fernandez EV, Reece KM, Ley AM, Troutman SM, Sissung TM, Price DK, et al. Dual targeting of the androgen receptor and hypoxia-inducible factor 1α pathways synergistically inhibits castration-resistant prostate cancer cells. Mol Pharmacol. 2015;87(6):1006–12.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Stice JP, Wardell SE, Norris JD, Yllanes AP, Alley HM, Haney VO, et al. CDK4/6 therapeutic intervention and viable alternative to taxanes in CRPC. Mol Cancer Res. 2017;15(6):660–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Li J, Wang R, Kong Y, Broman MM, Carlock C, Chen L, et al. Targeting Plk1 to enhance efficacy of olaparib in castration-resistant prostate cancer. Mol Cancer Ther. 2017;16(3):469–79.PubMedCrossRefGoogle Scholar
  120. 120.
    Lamoureux F, Thomas C, Yin MJ, Kuruma H, Beraldi E, Fazli L, et al. Clusterin inhibition using OGX-011 synergistically enhances Hsp90 inhibitor activity by suppressing the heat shock response in castrate-resistant prostate cancer. Cancer Res. 2011;71(17):5838–49.PubMedCrossRefGoogle Scholar
  121. 121.
    Azad AA, Zoubeidi A, Gleave ME, Chi KN. Targeting heat shock proteins in metastatic castration-resistant prostate cancer. Nat Rev Urol. 2015;12(1):26–36.PubMedCrossRefGoogle Scholar
  122. 122.
    Chi KN, Higano CS, Blumenstein B, Ferrero JM, Reeves J, Feyerabend S, et al. Custirsen in combination with docetaxel and prednisone for patients with metastatic castration-resistant prostate cancer (SYNERGY trial): a phase 3, multicentre, open-label, randomised trial. Lancet Oncol. 2017;18(4):473–85.PubMedCrossRefGoogle Scholar
  123. 123.
    Fizazi K, Hotte SJ, Saad F, Alekseev B, Matveev VB, Flechon A, et al. Final overall survival (OS) from the AFFINITY phase 3 trial of custirsen and cabazitaxel/prednisone in men with previously treated metastatic castration-resistant prostate cancer (mCRPC). ESMO 2016; Presentation #LBA9_PR.Google Scholar
  124. 124.
    Luan X, Lu Q, Jiang Y, Zhang S, Wang Q, Yuan H, et al. Crystal structure of human RANKL complexed with its decoy receptor osteoprotegerin. J Immunol. 2012;189(1):245–52.PubMedCrossRefGoogle Scholar
  125. 125.
    Smith MR, Saad F, Coleman R, Shore N, Fizazi K, Tombal B, et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet. 2012;379(9810):39–46.PubMedCrossRefGoogle Scholar
  126. 126.
    Fizazi K, Carducci M, Smith M, Damião R, Brown J, Karsh L, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377(9768):813–22.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371(11):1028–38.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Panagiotis J. Vlachostergios
    • 1
  • Marcia Paddock
    • 1
  • Ana M. Molina
    • 1
  1. 1.Division of Hematology and Medical Oncology, Department of Medicine, Meyer Cancer CenterNew York Presbyterian Hospital, Weill Cornell Medical CollegeNew YorkUSA

Personalised recommendations