Advertisement

Molecular Imaging of Prostate Cancer: Radiopharmaceuticals for Positron Emission Tomography (PET) and Single-Photon Emission Computed Tomography (SPECT)

  • Shankar Vallabhajosula
  • Berna D. Polack
  • John W. Babich
Chapter
Part of the Molecular Pathology Library book series (MPLB)

Abstract

Prostate cancer is characterized by evolution from a clinically localized hormone-naïve state in the prostate gland to an eventually castration-resistant metastatic state. Clinical imaging tools employed in the diagnosis of prostate cancer include transrectal ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and bone scans. Unfortunately, the likelihood of disease detection with these modalities is low. The structural imaging techniques such as CT and MRI provide details about the anatomy and anatomical relations such as size, local invasions, tumor borders, and anatomical distortions. In contrast, molecular imaging based on single-photon emission computed tomography (SPECT) and positron emission tomography (PET) radiopharmaceuticals is a type of medical imaging that provides detailed pictures of what is happening inside the body noninvasively at the molecular and cellular level and offers unique insights into the human body that enable physicians to personalize patient care. The molecular imaging radiopharmaceuticals target specifically biologically relevant molecules such as enzymes involved in the metabolism of glucose and fatty acids, receptors such as androgen receptors (AR), and antigens such as prostate-specific membrane antigen (PSMA). The current Food and Drug Administration (FDA)-approved molecular imaging radiopharmaceuticals include 99mTc-labeled bone imaging agents and 111In-labeled anti-PSMA antibody (ProstaScint™) for SPECT and [18F]fluorodeoxyglucose, [18F]sodium fluoride (NaF), and [11C]choline (CH) for PET. Emerging agents under clinical development include radiolabeled analogs of lipid, amino acid, and nucleoside metabolism, as well as other small molecules more specifically targeting prostate cancer biomarkers including AR and PSMA. In the last 5 years, several small-molecule PSMA inhibitors labeled with 123I or 99mTc (for SPECT) and 18F or 68Ga (for PET) have been evaluated in phase I and II clinical studies and show significant diagnostic potential for molecular imaging studies of prostate cancer. As the management of prostate cancer becomes more personalized and new treatments become available, there is increasing clinical demand for molecular imaging for prostate cancer diagnosis. In this chapter, we have highlighted a great number and variety of emerging molecular imaging agents for prostate cancer diagnosis.

Keywords

Structural imaging Molecular imaging Transrectal ultrasonography (TRUS) Prostate-specific membrane antigen (PSMA) imaging MRI CT 

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Schrecengost R, Knudsen KE. Molecular pathogenesis and progression of prostate cancer. Semin Oncol. 2013;40:244–58.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Aus G, Bergdahl S, Lodding P, Lilja H, Hugosson J. Prostate cancer screening decreases the absolute risk of being diagnosed with advanced prostate cancer—results from a prospective, population based randomized controlled trial. Eur Urol. 2007;51:659–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Schröder FH, Hugosson J, Carlsson S, Tammela T, Määttänen L, Auvinen A, Kwiatkowski M, Recker F, Roobol MJ. Screening for prostate cancer decreases the risk of developing metastatic disease: findings from the European Randomized Study of Screening for Prostate Cancer (ERSPC). Eur Urol. 2012;62:745–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Catalona WJ, Smith DS, Ratliff TL, Basler JW. Detection of organ-confined prostate cancer is increased through prostate-specific antigen-based screening. JAMA. 1993;270(8):948–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Gosselaar C, Roobol MJ, Roemeling S, Schröder FH. The role of the digital rectal examination in subsequent screening visits in the European randomized study of screening for prostate cancer (ERSPC), Rotterdam. Eur Urol. 2008;54(3):581–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Shinohara K, Wheeler TM, Scardino PT. The appearance of prostate cancer on transrectal ultrasonography: correlation of imaging and pathological examinations. J Urol. 1989;142:76–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Hricak H, Choyke PL, Eberhardt SC, Leibel SA, Scardino PT. Imaging prostate cancer: a multidisciplinary perspective. Radiology. 2007;243(1):28–53.PubMedCrossRefGoogle Scholar
  9. 9.
    Humphrey PA. Gleason grading and prognostic factors in carcinoma of the prostate. Mod Pathol. 2004;17:292–306.PubMedCrossRefGoogle Scholar
  10. 10.
    Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA, Grading Committee. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: definition of grading patterns and proposal for a new grading system. Am J Surg Pathol. 2016;40:244–52.PubMedGoogle Scholar
  11. 11.
    Grimm P, Billiet I, Bostwick D, Dicker AP, Frank S, Immerzeel J, Keyes M, Kupelian P, Lee WR, Machtens S, Mayadev J, Moran BJ, Merrick G, Millar J, Roach M, Stock R, Shinohara K, Scholz M, Weber E, Zietman A, Zelefsky M, Wong J, Wentworth S, Vera R, Langley S. Comparative analysis of prostate-specific antigen free survival outcomes for patients with low, intermediate and high risk prostate cancer treatment by radical therapy. Results from the Prostate Cancer Results Study Group. BJU Int. 2012;109(Suppl. 1):22–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Khan MA, Han M, Partin AW, Epstein JI, Walsh PC. Long-term cancer control of radical prostatectomy in men younger than 50 years of age: update 2003. Urology. 2003;62(1):86–91. Discussion: 91–82PubMedCrossRefGoogle Scholar
  13. 13.
    Djavan B, Moul JW, Zlotta A, Remzi M, Ravery V. PSA progression following radical prostatectomy and radiation therapy: new standards in the new Millennium. Eur Urol. 2003;43(1):12–27.PubMedCrossRefGoogle Scholar
  14. 14.
    Zaorsky NG, Raj GV, Trabulsi EJ, Lin J, Den RB. The dilemma of a rising PSA after local therapy: what are our options? Semin Oncol. 2013;40(3):322–36.PubMedCrossRefGoogle Scholar
  15. 15.
    Lee F, Gray JM, McLeary RD, Meadows TR, Kumasaka GH, Borlaza GS, Straub WH, Lee F Jr, Solomon MH, McHugh TA, et al. Transrectal ultrasound in the diagnosis of prostate cancer: location, echogenicity, histopathology, and staging. Prostate. 1985;7:117–29.PubMedCrossRefGoogle Scholar
  16. 16.
    Halpern EJ, Frauscher F, Strup SE, Nazarian LN, O’Kane P, Gomella LG. Prostate: high-frequency Doppler US imaging for cancer detection. Radiology. 2002;225:71–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Kuligowska E, Barish MA, Fenlon HM, Blake M. Predictors of prostate carcinoma: accuracy of gray-scale and color Doppler US and serum markers. Radiology. 2001;220:757–64.PubMedCrossRefGoogle Scholar
  18. 18.
    Zelefsky MJ, Yamada Y, Marion C, Sim S, Cohen G, Ben-Porat L, Silvern D, Zaider M. Improved conformality and decreased toxicity with intraoperative computer-optimized transperineal ultrasound-guided prostate brachytherapy. Int J Radiat Oncol Biol Phys. 2003;55(4):956–63.PubMedCrossRefGoogle Scholar
  19. 19.
    De La Taille A, Benson MC, Bagiella E, Bagiella E, Burchardt M, Shabsigh A, Olsson CA, Katz AE. Cryoablation for clinically localized prostate cancer using an argon-based system: complication rates and biochemical recurrence. BJU Int. 2000;85:281–6.CrossRefGoogle Scholar
  20. 20.
    Hövels AM, Heesakkers RA, Adang EM, Jager GJ, Strum S, Hoogeveen YL, Severens JL, Barentsz JO. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol. 2008;63(4):387–95.PubMedCrossRefGoogle Scholar
  21. 21.
    Hricak H, White S, Vigneron D, Kurhanewicz J, Kosco A, Levin D, Weiss J, Narayan P, Carroll PR. Carcinoma of the prostate gland: MR imaging with pelvic phased array coil versus integrated endorectal-pelvic phased-array coils. Radiology. 1994;193:703–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Schnall MD, Pollack HM. Magnetic resonance imaging of the prostate gland. Urol Radiol. 1990;12:109–11.PubMedCrossRefGoogle Scholar
  23. 23.
    Zakian KL, Eberhardt S, Hricak H, Shukla-Dave A, Kleinman S, Muruganandham M, Sircar K, Kattan MW, Reuter VE, Scardino PT, Koutcher JA. Transition zone prostate cancer: metabolic characteristics at 1H MR spectroscopic imaging—initial results. Radiology. 2003;229:241–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Silva RC, Sasse AD, Matheus WE, Ferreira U. Magnetic resonance image in the diagnosis and evaluation of extra-prostatic extension and involvement of seminal vesicles of prostate cancer: a systematic review of literature and meta-analysis. Int Braz J Urol. 2013;39(2):155–66.PubMedCrossRefGoogle Scholar
  25. 25.
    Kirkham AP, Haslam P, Keanie JY, McCafferty I, Padhani AR, Punwani S, Richenberg J, Rottenberg G, Sohaib A, Thompson P, Turnbull LW, Kurban L, Sahdev A, Clements R, Carey BM, Allen C. Prostate MRI: who, when, and how? Report from a UK consensus meeting. Clin Radiol. 2013;68(10):1016–23.PubMedCrossRefGoogle Scholar
  26. 26.
    Roy C, Foudi F, Charton J, Jung M, Lang H, Saussine C, Jacqmin D. Comparative sensitivities of functional MRI sequences in detection of local recurrence of prostate carcinoma after radical prostatectomy or external-beam radiotherapy. AJR Am J Roentgenol. 2013;200(4):W361–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Jadvar H. Molecular imaging of prostate cancer with PET. J Nucl Med. 2013;54:1685–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Kiess AP, Cho SY, Pomper MG. Translational molecular imaging of prostate cancer. Curr Radiol Rep. 2013;1(3):216–26.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Rossi PJ, Schuster DM. Molecular imaging of advanced prostate cancer. Curr Probl Cancer. 2015;39:29–32.PubMedCrossRefGoogle Scholar
  30. 30.
    Wong KK, Piert M. Dynamic bone imaging with 99mTc-labeled diphosphonates and 18F-NaF: mechanisms and applications. J Nucl Med. 2013;54:590–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Even-Sapir E, Metser U, Michani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–97.PubMedGoogle Scholar
  32. 32.
    Helyar V, Mohan HK, Barwick T, Livieratos L, Gnanasegaran G, Clarke SE, Fogelman I. The added value of multi-slice SPECT/CT in patients with equivocal bony metastasis from carcinoma of the prostate. Eur J Nucl Med Mol Imaging. 2010;37(4):706–13.PubMedCrossRefGoogle Scholar
  33. 33.
    Smith PH, Bono A, Calais da Silva F, Debruyne F, Denis L, Robinson P, Sylvester R, Armitage TG. Some limitations of the radioisotope bone scan in patients with metastatic prostatic cancer. Cancer. 1990;66:1009–16.PubMedCrossRefGoogle Scholar
  34. 34.
    Pollen JJ, Shlaer WJ. Osteoblastic response to successful treatment of metastatic cancer of the prostate. AJR. 1979;132:927–31.PubMedCrossRefGoogle Scholar
  35. 35.
    Imbriaco M, Larson SM, Yeung HW, Mawlawi OR, Erdi Y, Venkatraman ES, Scher HI. A new parameter for measuring metastatic bone involvement by prostate cancer: the Bone Scan Index. Clin Cancer Res. 1998;4(7):1765–72.PubMedGoogle Scholar
  36. 36.
    Dennis ER, Jia X, Mezheritskiy IS, Stephenson RD, Schoder H, Fox JJ, Heller G, Scher HI, Larson SM, Morris MJ. Bone scan index: a quantitative treatment response biomarker for castration-resistant metastatic prostate cancer. J Clin Oncol. 2012;30(5):519–24.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ulmert D, Kaboteh R, Fox JJ, Savage C, Evans MJ, Lilja H, Abrahamsson PA, Björk T, Gerdtsson A, Bjartell A, Gjertsson P, Höglund P, Lomsky M, Ohlsson M, Richter J, Sadik M, Morris MJ, Scher HI, Sjöstrand K, Yu A, Suurküla M, Edenbrandt L, Larson SM. A novel automated platform for quantifying the extent of skeletal tumor involvement in prostate cancer patients using the Bone Scan Index. Eur Urol. 2012;62(1):78–84.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Wade AA, Scott JA, Kuter I, Fischman AJ. Flare response in 18F-fluoride ion PET bone scanning. AJR. 2006;186:1783–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Warburg O, Posener K, Negelein E. Ueber den stoffwechsel der tumoren. Biochem Z. 1924;152:319–44.Google Scholar
  40. 40.
    Macheda ML, Rogers S, Bets JD. Molecular and cellular regulation of glucose transport (GLUT) proteins in cancer. J Cell Physiol. 2005;202:654–62.PubMedCrossRefGoogle Scholar
  41. 41.
    Smith TA. Mammalian hexokinases and their abnormal expression in cancer. Br J Biomed Sci. 2000;57:170–8.PubMedGoogle Scholar
  42. 42.
    Effert P, Beniers AJ, Tamimi Y, Handt S, Jakse G. Expression of glucose transporter 1 (GLUT-1) in cell lines and clinical specimen from human prostate adenocarcinoma. Anticancer Res. 2004;24:3057–63.PubMedGoogle Scholar
  43. 43.
    Stewardt GD, Gray K, Pennington CJ, Edwards DR, Riddick AC, Ross JA, Habib FK. Analysis of hypoxia-associated gene expression in prostate cancer: lysyl oxidase and glucose transporter 1 expression correlate with Gleason score. Oncol Rep. 2008;20:1561–7.Google Scholar
  44. 44.
    Kukuk D, Reischl G, Raguin O, Wiehr S, Judenhofer MS, Calaminus C, Honndorf VS, Quintanilla-Martinez L, Schönberger T, Duchamp O, Machulla HJ, Pichler BJ. Assessment of PET tracer uptake in hormone-independent and hormone-dependent xenograft prostate cancer mouse models. J Nucl Med. 2011;52:1654–63.PubMedCrossRefGoogle Scholar
  45. 45.
    Yang Z, Hu S, Cheng J, Xu J, Shi W, Zhu B, Zhang Y, Yao Z, Pan H, Zhang Y. Prevalence and risk of cancer of incidental uptake in prostate identified by fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography. Clin Imaging. 2014;38(4):470–4. pii: S0899–7071(14)00046–1PubMedCrossRefGoogle Scholar
  46. 46.
    Fox JJ, Schoder H, Larson SM. Molecular imaging of prostate cancer. Curr Opin Urol. 2012;22(4):320–7.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Jadvar H. Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J Nucl Med. 2011;52:81–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Schoder H, Herrmann K, Gonen M, Hricak H, Eberhard S, Scardino P, Scher HI, Larson SM. 2-[18F]fluoro-2-deoxyglucose positron emission tomography for the detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. Clin Cancer Res. 2005;11(13):4761–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Morris MJ, Akhurst T, Larson SM, Ditullio M, Chu E, Siedlecki K, Verbel D, Heller G, Kelly WK, Slovin S, Schwartz L, Scher HI. Fluorodeoxyglucose positron emission tomography as an outcome measure for castrate metastatic prostate cancer treated with anti-microtubule chemotherapy. Clin Cancer Res. 2005;11(9):3210–6.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Meirelles GS, Schoder H, Ravizzini GC, Gönen M, Fox JJ, Humm J, Morris MJ, Scher HI, Larson SM. Prognostic value of baseline [18F] fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer. 2010;16(24):6093–9.CrossRefGoogle Scholar
  51. 51.
    Podo F. Tumour phospholipid metabolism. NMR Biomed. 1999;12:413–39.PubMedCrossRefGoogle Scholar
  52. 52.
    Suburu J, Chen YQ. Lipids and prostate cancer. Prostaglandins Other Lipid Mediat. 2012;98:1–10.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Umbehr MH, Müntener M, Hany T, Sulser T, Bachmann LM. The role of 11C-choline and 18F-fluorocholine positron emission tomography (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis. Eur Urol. 2013;64(1):106–17.PubMedCrossRefGoogle Scholar
  54. 54.
    Evangelista L, Guttilla A, Zattoni F, Muzzio PC, Zattoni F. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol. 2013;63(6):1040–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Evangelista L, Zattoni F, Guttilla A, Saladini G, Zattoni F, Colletti PM, Rubello D. Choline PET or PET/CT and biochemical relapse of prostate cancer: a systematic review and meta-analysis. Clin Nucl Med. 2013;38(5):305–14.PubMedCrossRefGoogle Scholar
  56. 56.
    Reske SN, Blumstein NM, Neumaier B, Gottfried HW, Finsterbusch F, Kocot D, Möller P, Glatting G, Perner S. Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med. 2006;47:1249–54.PubMedGoogle Scholar
  57. 57.
    Souvatzoglou M, Weirich G, Schwarzenboeck S, Maurer T, Schuster T, Bundschuh RA, Eiber M, Herrmann K, Kuebler H, Wester HJ, Hoefler H, Gschwend J, Schwaiger M, Treiber U, Krause BJ. The sensitivity of [11C]choline PET/CT to localize prostate cancer depends on the tumor configuration. Clin Cancer Res. 2011;17(11):3751–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Giovacchini G, Picchio M, Parra RG, Briganti A, Gianolli L, Montorsi F, Messa C. Prostate-specific antigen velocity versus prostate specific antigen doubling time for prediction of 11C choline PET/CT in prostate cancer patients with biochemical failure after radical prostatectomy. Clin Nucl Med. 2012;37(4):325–31.PubMedCrossRefGoogle Scholar
  59. 59.
    Souvatzoglou M, Krause BJ, Purschel A, Thamm R, Schuster T, Buck AK, Zimmermann F, Molls M, Schwaiger M, Geinitz H. Influence of [11C]choline PET/CT on the treatment planning for salvage radiation therapy in patients with biochemical recurrence of prostate cancer. Radiother Oncol. 2011;99(2):193–200.PubMedCrossRefGoogle Scholar
  60. 60.
    Rigatti P, Suardi N, Briganti A, Da Pozzo LF, Tutolo M, Villa L, Gallina A, Capitanio U, Abdollah F, Scattoni V, Colombo R, Freschi M, Picchio M, Messa C, Guazzoni G, Montorsi F. Pelvic/retroperitoneal salvage lymph node dissection for patients treated with radical prostatectomy with biochemical recurrence and nodal recurrence detected by [11C]choline positron emission tomography/computed tomography. Eur Urol. 2011;60(5):935–43.PubMedCrossRefGoogle Scholar
  61. 61.
    Castellucci P, Picchio M. 11C-Choline PET/CT and PSA kinetics. Eur J Nucl Med Mol Imaging. 2013;40(Suppl 1):S36–40.PubMedCrossRefGoogle Scholar
  62. 62.
    Oyama N, Akino H, Kanamaru H, Suzuki Y, Muramoto S, Yonekura Y, Sadato N, Yamamoto K, Okada K. 11C-Acetate PET imaging of prostate cancer. J Nucl Med. 2002;43:181–6.PubMedGoogle Scholar
  63. 63.
    Kotzerke J, Volkmer BG, Neumaier B, Gschwend JE, Hautmann RE, Reske SN. Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging. 2002;29:1380–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Ponde DE, Dence CS, Oyama N, Kim J, Tai YC, Laforest R, Siegel BA, Welch MJ. Prostate tumor imaging - in vivo evaluation of 18F-fluoroacetate versus 11C-acetate. J Nucl Med. 2007;48:420–8.PubMedGoogle Scholar
  65. 65.
    Mena E, Turkbey B, Mani H, Adler S, Valera VA, Bernardo M, Shah V, Pohida T, McKinney Y, Kwarteng G, Daar D, Lindenberg ML, Eclarinal P, Wade R, Linehan WM, Merino MJ, Pinto PA, Choyke PL, Kurdziel KA. 11C-Acetate PET/CT in localized prostate cancer: a study with MRI and histopathologic correlation. J Nucl Med. 2012;53(4):538–45.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Haseebuddin M, Dehdashti F, Siegel BA, Liu J, Roth EB, Nepple KG, Siegel CL, Fischer KC, Kibel AS, Andriole GL, Miller TR. 11C-acetate PET/CT before radical prostatectomy: nodal staging and treatment failure prediction. J Nucl Med. 2013;54:699–706.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Mohsen B, Giorgio T, Rasoul ZS, Werner L, Ali GR, Reza DK, Ramin S. Application of 11C-acetate positron emission tomography (PET) imaging in prostate cancer: systematic review and meta-analysis of the literature. BJU Int. 2013;112:1062–72.PubMedCrossRefGoogle Scholar
  68. 68.
    Oyama N, Miller TR, Dehdashti F, Siegel BA, Fischer KC, Michalski JM, Kibel AS, Andriole GL, Picus J, Welch MJ. 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med. 2003;44(4):549–55.PubMedGoogle Scholar
  69. 69.
    Albrecht S, Buchegger F, Soloviev D, Zaidi H, Vees H, Khan HG, Keller A, Bischof Delaloye A, Ratib O, Miralbell R. (11)C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging. 2007;34(2):185–96.PubMedCrossRefGoogle Scholar
  70. 70.
    Kotzerke J, Volkmer BG, Glatting G, van den Hoff J, Gschwend JE, Messer P, Reske SN, Neumaier B. Intraindividual comparison of [11C]acetate and [11C]choline PET for detection of metastases of prostate cancer. Nuklearmedizin. 2003;42(1):25–30.PubMedGoogle Scholar
  71. 71.
    Buchegger F, Garibotto V, Zilli T, Allainmat L, Jorcano S, Vees H, Rager O, Steiner C, Zaidi H, Seimbille Y, Ratib O, Miralbell R. First imaging results of an intra-individual comparison of [11C]acetate and [18F]fluorocholine PET/CT in patients with prostate cancer at early biochemical first or second relapse after prostatectomy or radiotherapy. Eur J Nucl Med Mol Imaging. 2014;41(1):68–78.PubMedCrossRefGoogle Scholar
  72. 72.
    Toth G, Lengyel Z, Balkay L, Salah MA, Trón L, Tóth C. Detection of prostate cancer with 11C-methionine positron emission tomography. J Urol. 2005;173(1):66–9. Discussion 69.PubMedCrossRefGoogle Scholar
  73. 73.
    Shiiba M, Ishihara K, Kimura G, Kuwako T, Yoshihara H, Sato H, Kondo Y, Tsuchiya S, Kumita S. Evaluation of primary prostate cancer using 11C-methionine-PET/CT and 18F-FDG-PET/CT. Ann Nucl Med. 2012;26(2):138–45.PubMedCrossRefGoogle Scholar
  74. 74.
    Okudaira H, Nakanishi T, Oka S, Kobayashi M, Tamagami H, Schuster DM, Goodman MM, Shirakami Y, Tamai I, Kawai K. Kinetic analyses of trans-1-amino-3-[18F] fluorocyclobutanecarboxylic acid transport in Xenopus laevis oocytes expressing human ASCT2 and SNAT2. Nucl Med Biol. 2013;40:670–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Schuster DM, Votaw JR, Nieh PT, Yu W, Nye JA, Master V, Bowman FD, Issa MM, Goodman MM. Initial experience with the radiotracer anti-1-amino-3–18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med. 2007;48(1):56–63.PubMedGoogle Scholar
  76. 76.
    Schuster DM, Savir-Baruch B, Nieh PT, Master VA, Halkar RK, Rossi PJ, Lewis MM, Nye JA, Yu W, Bowman FD, Goodman MM. Detection of recurrent prostate carcinoma with anti-1-amino-3–18F-fluorocyclobutane-1-carboxylic acid PET/CT and 111In-capromab pendetide SPECT/CT. Radiology. 2011;259:852–61.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Schuster DM, Taleghani PA, Nieh PT, Master VA, Amzat R, Savir-Baruch B, Halkar RK, Fox T, Osunkoya AO, Moreno CS, Nye JA, Yu W, Fei B, Wang Z, Chen Z, Goodman MM. Characterization of primary prostate carcinoma by anti-1-amino-2-[(18)F]-fluorocyclobutane-1-carboxylic acid (anti-3-[(18)F] FACBC) uptake. Am J Nucl Med Mol Imaging. 2013;3(1):85–96.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Amzat R, Taleghani PA, Savir-Baruch B, Nieh PT, Master VA, Halkar RK, Lewis MM, Faurot M, Bellamy LM, Goodman MM, Schuster DM. Unusual presentations of metastatic prostate carcinoma as detected by anti-3 F-18 FACBC PET/CT. Clin Nucl Med. 2011;36(9):800–2.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Nanni C, Schiavina R, Boschi S, Ambrosini V, Pettinato C, Brunocilla E, Martorana G, Fanti S. Comparison of 18F-FACBC and 11Ccholine PET/CT in patients with radically treated prostate cancer and biochemical relapse: preliminary results. Eur J Nucl Med Mol Imaging. 2013;40(Suppl 1):11–7.CrossRefGoogle Scholar
  80. 80.
    Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev. 2004;25:276–308.PubMedCrossRefGoogle Scholar
  81. 81.
    Dehdashti F, Picus J, Michalski JM, Dence CS, Siegel BA, Katzenellenbogen JA, Welch MJ. Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging. 2005;32(3):344–50.PubMedCrossRefGoogle Scholar
  82. 82.
    Beattie BJ, Smith-Jones PM, Jhanwar YS, Schöder H, Schmidtlein CR, Morris MJ, Zanzonico P, Squire O, Meirelles GS, Finn R, Namavari M, Cai S, Scher HI, Larson SM, Humm JL. Pharmacokinetic assessment of the uptake of 16beta-18F-fluoro-5alpha-dihydrotestosterone (FDHT) in prostate tumors as measured by PET. J Nucl Med. 2010;51(2):183–92.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Larson SM, Morris M, Gunther I, Beattie B, Humm JL, Akhurst TA, Finn RD, Erdi Y, Pentlow K, Dyke J, Squire O, Bornmann W, McCarthy T, Welch M, Scher H. Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med. 2004;45(3):366–73.PubMedGoogle Scholar
  84. 84.
    Fox JJ, Morris MJ, Larson SM, Schöder H, Scher HI. Developing imaging strategies for castration resistant prostate cancer. Acta Oncol. 2011;50(Suppl 1):39–48.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Scher HI, Beer TM, Higano CS, Anand A, Taplin ME, Efstathiou E, Rathkopf D, Shelkey J, Yu EY, Alumkal J, Hung D, Hirmand M, Seely L, Morris MJ, Danila DC, Humm J, Larson S, Fleisher M, Sawyers CL. Anti-tumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study. Lancet. 2010;375(9724):1437–46.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Ananias HJ, de Jong IJ, Diercks RA, van de Wiele C, Helfrich W, Elsinga PH. Nuclear imaging of prostate cancer with gastrin-releasing receptor targeted radiopharmaceuticals. Curr Pharm Des. 2008;14:3033–47.PubMedCrossRefGoogle Scholar
  87. 87.
    Schroeder RPJ, van Weerden WM, Krenning EP, Bangma CH, Berndsen S, Grievink-de Ligt CH, Groen HC, Reneman S, de Blois E, Breeman WA, de Jong M. Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts. Eur J Nucl Med Mol Imaging. 2011;38:1257–66.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Markwalder R, Reubi JC. Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res. 1999;59:1152–9.PubMedGoogle Scholar
  89. 89.
    Sancho V, Di Florio A, Moody TW, Jensen RT. Bombesin receptor-mediated imaging and cytotoxicity: review and current status. Curr Drug Deliv. 2011;8:79–134.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Cescato R, Maina T, Nock B, Nikolopoulou A, Charalambidis D, Piccand V, Reubi JC. Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med. 2008;49:318–26.PubMedCrossRefGoogle Scholar
  91. 91.
    Bergsma H, Kulkarni H, Mueller D, et al. PET/CT imaging with a novel 68Ga-labelled GRP-receptor antagonist, Sarabesin 3. First clinical data in patients with prostate and breast cancer. J Nucl Med. 2013;54(s2):280.Google Scholar
  92. 92.
    Kahkonen E, Jambor I, Kemppainen J, Lehtiö K, Grönroos TJ, Kuisma A, Luoto P, Sipilä HJ, Tolvanen T, Alanen K, Silén J, Kallajoki M, Roivainen A, Schäfer N, Schibli R, Dragic M, Johayem A, Valencia R, Borkowski S, Minn H. In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86–7548. Clin Cancer Res. 2013;19:5434–43.PubMedCrossRefGoogle Scholar
  93. 93.
    Wieser G, Mansi R, Grosu AL, Schultze-Seemann W, Dumont-Walter RA, Meyer PT, Maecke HR, Reubi JC, Weber WA. Positron emission tomography (PET) imaging of prostate cancer with a gastrin releasing peptide receptor antagonist—from mice to men. Theranostics. 2014;4(4):412–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Carter RE, Feldman AR, Coyle JT. Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. Proc Natl Acad Sci U S A. 1996;93(2):749–53.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Grauer LS, Lawler KD, Marignac JL, Kumar A, Goel AS, Wolfert RL. Identification, purification, and subcellular localization of prostate-specific membrane antigen PSM′ protein in the LNCaP prostatic carcinoma cell line. Cancer Res. 1998;58:4787–9.PubMedGoogle Scholar
  96. 96.
    Horoszewicz JS, Kawinski E, Murphy GP. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 1987;7:927–35.PubMedGoogle Scholar
  97. 97.
    Israeli RS, Powell CT, Corr JG, Fair WR, Heston WD. Expression of the prostate-specific membrane antigen. Cancer Res. 1994;54:1807–11.PubMedGoogle Scholar
  98. 98.
    Chang SS. Overview of prostate-specific membrane antigen. Rev Urol. 2004;6(S10):S13–8.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Wright GL Jr, Haley C, Beckett ML, Schellhammer PF. Expression of prostate-specific membrane antigen (PSMA) in normal, benign and malignant prostate tissues. Urol Oncol. 1995;1:18–28.PubMedCrossRefGoogle Scholar
  100. 100.
    Wright L Jr, Grob B, Haley C, Grossman K, Newhall K, Petrylak D, Troyer J, Konchuba A, Schellhammer PF, Moriarty R. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology. 1998;48:326–34.CrossRefGoogle Scholar
  101. 101.
    Sweat SD, Pacelli A, Murphy GP, Bostwick DG. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology. 1998;52:637–40.PubMedCrossRefGoogle Scholar
  102. 102.
    Troyer JK, Beckett ML, Wright GL Jr. Location of prostate-specific membrane antigen in the LNCaP prostate carcinoma cell line. Prostate. 1997;30:232–42.PubMedCrossRefGoogle Scholar
  103. 103.
    Rosenthal SA, Haseman MK, Polascik TJ. Utility of capromab pendetide (ProstaScint) imaging in the management of prostate cancer. Tech Urol. 2001;7(1):27–37.PubMedGoogle Scholar
  104. 104.
    Hinkle GH, Burgers JK, Neal CE, Texter JH, Kahn D, Williams RD, Maguire R, Rogers B, Olsen JO, Badalament RA. Multicenter radioimmunoscintigraphic evaluation of patients with prostate carcinoma using indium-111capromabpendetide. Cancer. 1998;83(4):739–47.PubMedCrossRefGoogle Scholar
  105. 105.
    Deb N, Goris M, Trisler K, Fowler S, Saal J, Ning S, Becker M, Marquez C, Knox S. Treatment of hormone-refractory prostate cancer with 90YCYT-356 monoclonal antibody. Clin Cancer Res. 1996;2(8):1289–97.PubMedGoogle Scholar
  106. 106.
    Thomas CT, Bradshaw PT, Pollock BH, Montie JE, Taylor JM, Thames HD, McLaughlin PW, DeBiose DA, Hussey DH, Wahl RL. Indium-111-capromab pendetide radioimmuno-scintigraphy and prognosis for durable biochemical response to salvage radiation therapy in men after failed prostatectomy. J Clin Oncol. 2003;21(9):1715–21.PubMedCrossRefGoogle Scholar
  107. 107.
    Wilkinson S, Chodak G. The role of 111indium-capromab pendetide imaging for assessing biochemical failure after radical prostatectomy. J Urol. 2004;172(1):133–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Smith-Jones PM, Vallabhajosula S, Navarro V, Bastidas D, Goldsmith SJ, Bander NH. Radiolabeled monoclonal antibodies specific to the extracellular domain of prostate-specific membrane antigen: preclinical studies in nude mice bearing LNCaP human prostate tumor. J Nucl Med. 2003;44:610–7.PubMedGoogle Scholar
  109. 109.
    Vallabhajosula S, Smith-Jones PM, Navarro V, Goldsmith SJ, Bander NH. Radioimmunotherapy of prostate cancer in human xenografts using monoclonal antibodies specific to prostate specific membrane antigen: studies in nude mice. Prostate. 2004;58:145–55.PubMedCrossRefGoogle Scholar
  110. 110.
    Vallabhajosula S, Kuji I, Hamacher KA, Konishi S, Kostakoglu L, Kothari PA, Milowski ML, Nanus DM, Bander NH, Goldsmith SJ. Pharmacokinetics and biodistribution of 111In- and 177Lu-labeled J591 antibody specific for prostate-specific membrane antigen: prediction of 90Y-J591 radiation dosimetry based on 111In or 177Lu. J Nucl Med. 2005;46:634–41.PubMedGoogle Scholar
  111. 111.
    Bander NH, Trabulsi EJ, Kostakoglu L, Yao D, Vallabhajosula S, Smith-Jones P, Joyce MA, Milowsky M, Nanus DM, Goldsmith SJ. Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J Urol. 2003;170:1717–21.PubMedCrossRefGoogle Scholar
  112. 112.
    Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ. Phase I trial of 1771utetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol. 2005;23:4591–601.PubMedCrossRefGoogle Scholar
  113. 113.
    Tagawa ST, Akhtar NH, Christos PJ, et al. Noninvasive measurement of prostate-specific membrane antigen (PSMA) expression with radiolabeled J591 imaging: a prognostic tool for metastatic castration-resistant prostate cancer (CRPC). J Clin Oncol 2013; 31(suppl):abstr 11081.Google Scholar
  114. 114.
    Holland JP, Divilov V, Bander NH, Smith-Jones PM, Larson SM, Lewis JS. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med. 2010;51(8):1293–300.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Osborne JR, Green DA, Spratt DE, Lyashchenko S, Fareedy SB, Robinson BD, Beattie BJ, Jain M, Lewis JS, Christos P, Larson SM, Bander NH, Scherr DS. A prospective pilot study of (89)Zr-J591/prostate specific membrane antigen positron emission tomography in men with localized prostate cancer undergoing radical prostatectomy. J Urol. 2014;191(5):1439–45.PubMedCrossRefGoogle Scholar
  116. 116.
    Morris MJ, Pandit-Taskar N, Carrasquillo JA, et al. Tumor-directed PET imaging of bone metastases in metastatic castration-resistant prostate cancer (mCRPC) using Zr-89 labeled anti-prostate specific membrane antigen (PSMA) antibody J591. J Clin Oncol 2013; 31(Suppl 6):abstr 31.Google Scholar
  117. 117.
    Evans MJ, Smith-Jones PM, Wongvipat J, Navarro V, Kim S, Bander NH, Larson SM, Sawyers CL. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc Natl Acad Sci U S A. 2011;108(23):9578–82.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Ruggiero A, Holland JP, Hudolin T, Shenker L, Koulova A, Bander NH, Lewis JS, Grimm J. Targeting the internal epitope of prostate-specific membrane antigen with 89Zr-7E11 immuno-PET. J Nucl Med. 2011;52(10):1608–15.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Elsasser-Beile U, Reischl G, Wiehr S, Bühler P, Wolf P, Alt K, Shively J, Judenhofer MS, Machulla HJ, Pichler BJ. PET imaging of prostate cancer xenografts with a highly specific antibody against the prostate-specific membrane antigen. J Nucl Med. 2009;50(4):606–11.PubMedCrossRefGoogle Scholar
  120. 120.
    Luthi-Carter R, Barczak AK, Speno H, Coyle JT. Molecular characterization of human brain N-acetylated alpha-linked acidic dipeptidase (NAALADase). J Pharmacol Exp Ther. 1998;286:1020–5.PubMedGoogle Scholar
  121. 121.
    Tiffany CW, Lapidus RG, Merion A, Calvin DC, Slusher BS. Characterization of the enzymatic activity of PSM: comparison with brain NAALADase. Prostate. 1999;39:28–35.PubMedCrossRefGoogle Scholar
  122. 122.
    Jackson PF, Slusher BS. Design of NAALADase inhibitors: a novel neuroprotective strategy. Curr Med Chem. 2001;8:949–57.PubMedCrossRefGoogle Scholar
  123. 123.
    Kozikowski AP, Nan F, Conti P, Zhang J, Ramadan E, Bzdega T, Wroblewska B, Neale JH, Pshenichkin S, Wroblewski JT. Design of remarkably simple, yet potent urea-based inhibitors of glutamate carboxypeptidase II (NAALADase). J Med Chem. 2001;44(3):298–301.PubMedCrossRefGoogle Scholar
  124. 124.
    Eder M, Eisenhut M, Babich J, Haberkorn U. PSMA as a target for radiolabelled small molecules. Eur J Nucl Med Mol Imaging. 2013;40(6):819–23.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Castanares MA, Mukherjee A, Chowdhury WH, Liu M, Chen Y, Mease RC, Wang Y, Rodriguez R, Lupold SE, Pomper MG. Evaluation of prostate-specific membrane antigen as an imaging reporter. J Nucl Med. 2014;55(5):805–11.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Maresca KP, Hillier SM, Femia FJ, Keith D, Barone C, Joyal JL, Zimmerman CN, Kozikowski AP, Barrett JA, Eckelman WC, Babich JW. A series of halogenated heterodimeric inhibitors of prostate specific membrane antigen (PSMA) as radiolabeled probes for targeting prostate cancer. J Med Chem. 2009;52:347–57.PubMedCrossRefGoogle Scholar
  127. 127.
    Hillier SM, Maresca KP, Lu G, Merkin RD, Marquis JC, Zimmerman CN, Eckelman WC, Joyal JL, Babich JW. Tc-99m-labeled small-molecule inhibitors of prostate-specific membrane antigen for molecular imaging of prostate cancer. J Nucl Med. 2013;54(8):1369–76.PubMedCrossRefGoogle Scholar
  128. 128.
    Barrett JA, Coleman RE, Goldsmith SJ, Vallabhajosula S, Petry NA, Cho S, Armor T, Stubbs JB, Maresca KP, Stabin MG, Joyal JL, Eckelman WC, Babich JW. First-in-man evaluation of two high-affinity PSMA-avid small molecules for imaging prostate cancer. J Nucl Med. 2013;54:380–7.PubMedCrossRefGoogle Scholar
  129. 129.
    Vallabhajosula S, Nikolopoulou A, Babich JW, Osborne JR, Tagawa ST, Lipai I, Solnes L, Maresca KP, Armor T, Joyal JL, Crummet R, Stubbs JB, Goldsmith SJ. 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen: pharmacokinetics and biodistribution studies in healthy subjects and patients with metastatic prostate cancer. J Nucl Med. 2014;55(11):1791–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Vallabhajosula S, Osborne JR, Nikolopoulou A, et al. PSMA targeted SPECT imaging biomarker to detect local and metastatic prostate cancer (PCa): phase I studies with 99mTc-MIP-1404 [Abstract]. J Nucl Med. 2013;54(s1):281.Google Scholar
  131. 131.
    Goffin K, Joniau S, Tenke P, et al. A phase 2 study of 99mTc-trofolastat (MIP-1404) to identify prostate cancer (PCa) in high-risk patients (pts) undergoing radical prostatectomy (RP) and extended pelvic lymph node (ePLN) dissection: an interim analysis [Abstract]. J Nucl Med. 2014;55(s1):15.Google Scholar
  132. 132.
    Zechmann CM, Afshar-Oromieh A, Armor T, Stubbs JB, Mier W, Hadaschik B, Joyal J, Kopka K, Debus J, Babich JW, Haberkorn U. Radiation dosimetry and first therapy results with a 124I/131I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging. 2014;41:1280–92.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Eder M, Schafer M, Bauder-Wust U, Hull WE, Wangler C, Mier W, Haberkorn U, Eisenhut M. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem. 2012;23:688–97.PubMedCrossRefGoogle Scholar
  134. 134.
    Eder M, Neels O, Müller M, Bauder-Wüst U, Remde Y, Schäfer M, Hennrich U, Eisenhut M, Afshar-Oromieh A, Haberkorn U, Kopka K. Novel preclinical and radiopharmaceutical aspects of [68Ga]Ga-PSMA-HBED-CC: a new PET tracer for imaging of prostate cancer. Pharmaceuticals (Basel). 2014;7(7):779–96.CrossRefGoogle Scholar
  135. 135.
    Afshar-Oromieh A, Haberkorn U, Eder M, Eisenhut M, Zechmann C. [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with [18F]-FECH. Eur J Nucl Med Mol Imaging. 2012;39:1085–6.PubMedCrossRefGoogle Scholar
  136. 136.
    Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, Eisenhut M, Boxler S, Hadaschik BA, Kratochwil C, Weichert W, Kopka K, Debus J, Haberkorn U. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42:197–209.PubMedCrossRefGoogle Scholar
  137. 137.
    Eiber M, Maurer T, Souvatzoglou M, Beer AJ, Ruffani A, Haller B, Graner FP, Kübler H, Haberhorn U, Eisenhut M, Wester HJ, Gschwend JE, Schwaiger M. Evaluation of hybrid 68Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med. 2015;56:668–74.PubMedCrossRefGoogle Scholar
  138. 138.
    Mease RC, Dusich CL, Foss CA, Ravert HT, Dannals RF, Seidel J, Prideaux A, Fox JJ, Sgouros G, Kozikowski AP, Pomper MG. N-[N-[(S)-1,3-Dicarboxypropyl] carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res. 2008;14:3036–43.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Cho SY, Gage KL, Mease RC, Senthamizhchelvan S, Holt DP, Jeffrey-Kwanisai A, Endres CJ, Dannals RF, Sgouros G, Lodge M, Eisenberger MA, Rodriguez R, Carducci MA, Rojas C, Slusher BS, Kozikowski AP, Pomper MG. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med. 2012;53(12):1883–91.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Chen Y, Pullambhatla M, Foss CA, Byun Y, Nimmagadda S, Senthamizhchelvan S, Sgouros G, Mease RC, Pomper MG. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pen tanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res. 2011;17(24):7645–53.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Szabo Z, Mena E, Rowe SP, Plyku D, Nidal R, Eisenberger MA, Antonarakis ES, Fan H, Dannals RF, Chen Y, Mease RC, Vranesic M, Bhatnagar A, Sgouros G, Cho SY, Pomper MG. Initial evaluation of [18F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol. 2015;17(4):565–74.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Banerjee SR, Pullambhatla M, Byun Y, Nimmagadda S, Green G, Fox JJ, Horti A, Mease RC, Pomper MG. 68Ga-labeled inhibitors of prostate-specific membrane antigen (PSMA) for imaging prostate cancer. J Med Chem. 2010;53:5333–41.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Nikolopoulou A, Amor-Coarasa A, Kelly J, Vallabhajosula V, Babich JW. Comparative evaluation of 68Ga-labeled urea-based PSMA ligands in LNCaP tumor bearing mice. J Nucl Med. 2015;56(s1):114.Google Scholar
  144. 144.
    Banerjee SR, Pullambhatla M, Foss CA, Nimmagadda S, Ferdani R, Anderson CJ, Mease RC, Pomper MG. 64Cu-labeled inhibitors of prostate-specific membrane antigen for PET imaging of prostate cancer. J Med Chem. 2014;57(6):2657–69.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Shankar Vallabhajosula
    • 1
  • Berna D. Polack
    • 1
  • John W. Babich
    • 1
  1. 1.Division of Radiopharmaceutical Sciences and Molecular Imaging Innovations Institute, Department of RadiologyWeill Cornell Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations