Skip to main content

Microtubules in Prostate Cancer

  • Chapter
  • First Online:
Precision Molecular Pathology of Prostate Cancer

Abstract

The microtubule (MT) network plays several essential roles throughout the cell cycle beyond its established role in mitosis; in prostate cancer (PC) cells, MTs have been directly implicated in facilitating the nuclear translocation of androgen receptor (AR) and in the activation of its downstream signaling activity.

The implication of the microtubule cytoskeleton in key processes for cancer progression makes MTs an effective target for cancer chemotherapy. To date, more than 10 microtubule-targeting drugs received FDA approval for the treatment of several solid tumors and hematologic malignancies, changing the adverse natural history of metastatic cancer, thus, establishing tubulin and microtubules as the most successful and effective target for cancer treatment.

Taxane chemotherapy drugs since their first FDA approval in 2004 (docetaxel) for the treatment of advanced prostate cancer have significantly improved overall survival and quality of life of advanced PC patients. Recently, a new therapeutic avenue involving taxanes presented a breakthrough in cancer treatment: in clinical trials docetaxel is tested in combination with the standard androgen deprivation therapy at the beginning of the treatment sequence in castration-naïve setting. Although these preliminary results still require further validation, if they hold true they will significantly impact clinical treatment of PC.

In spite of clinical achievements, the majority of taxane-treated patients will eventually progress, as a consequence of drug resistance development. Several molecular mechanisms have been proposed to underlie the phenomenon; modifications of the MT cytoskeleton, including differential tubulin isotype expression or posttranslational modifications, can alter the interaction between the drug and its target; moreover, alterations of molecules crucial for prostate cancer progression, such as AR splicing variants (ARv7), could circumvent taxane blockage of AR nuclear translocation and the subsequent activation of the AR-dependent signaling pathway.

A more comprehensive understanding of taxane mechanism(s) of action and of the processes sustaining taxane resistance will benefit prostate cancer treatment and improve patient survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. 1997;13:83–117.

    Article  CAS  PubMed  Google Scholar 

  2. Gundersen GG, Cook TA. Microtubules and signal transduction. Curr Opin Cell Biol. 1999;11(1):81–94.

    Article  CAS  PubMed  Google Scholar 

  3. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4(4):253–65.

    Article  CAS  PubMed  Google Scholar 

  4. Luduena RFB. In: Fojo T, editor. A. The isotypes of tubulin: distribution and functional significance. Totowa, NJ: Humana Press; 2008.

    Chapter  Google Scholar 

  5. Falconer MM, Echeverri CJ, Brown DL. Differential sorting of beta tubulin isotypes into colchicine-stable microtubules during neuronal and muscle differentiation of embryonal carcinoma cells. Cell Motil Cytoskeleton. 1992;21(4):313–25.

    Article  CAS  PubMed  Google Scholar 

  6. Panda D, Miller HP, Banerjee A, Ludueña RF, Wilson L. Microtubule dynamics in vitro are regulated by the tubulin isotype composition. Proc Natl Acad Sci. 1994;91(24):11358–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ranganathan S, Salazar H, Benetatos CA, Hudes GR. Immunohistochemical analysis of β-tubulin isotypes in human prostate carcinoma and benign prostatic hypertrophy. Prostate. 1997;30(4):263–8.

    Article  CAS  PubMed  Google Scholar 

  8. Verhey KJ, Gaertig J. The Tubulin Code. Cell Cycle. 2007;6(17):2152–60.

    Article  CAS  PubMed  Google Scholar 

  9. Westermann S, Weber K. Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol. 2003;4(12):938–48.

    Article  CAS  PubMed  Google Scholar 

  10. Janke C, Bulinski JC. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol. 2011;12(12):773–86.

    Article  CAS  PubMed  Google Scholar 

  11. Souček K, Kamaid A, Phung AD, Kubala L, Bulinski JC, Harper RW, et al. Normal and prostate cancer cells display distinct molecular profiles of α-tubulin posttranslational modifications. Prostate. 2006;66(9):954–65.

    Article  PubMed  Google Scholar 

  12. Carbonaro M, O’Brate A, Giannakakou P. Microtubule disruption targets HIF-1alpha mRNA to cytoplasmic P-bodies for translational repression. J Cell Biol. 2011;192(1):83–99.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Giannakakou P, Sackett DL, Ward Y, Webster KR, Blagosklonny MV, Fojo T. p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat Cell Biol. 2000;2(10):709–17.

    Article  CAS  PubMed  Google Scholar 

  14. Jiao W, Datta J, Lin HM, Dundr M, Rane SG. Nucleocytoplasmic shuttling of the retinoblastoma tumor suppressor protein via Cdk phosphorylation-dependent nuclear export. J Biol Chem. 2006;281(49):38098–108.

    Article  CAS  PubMed  Google Scholar 

  15. Mabjeesh NJ, Escuin D, LaVallee TM, Pribluda VS, Swartz GM, Johnson MS, et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell. 2003;3(4):363–75.

    Article  CAS  PubMed  Google Scholar 

  16. Darshan MS, Loftus MS, Thadani-Mulero M, Levy BP, Escuin D, Zhou XK, et al. Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res. 2011;71(18):6019–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Zhu ML, Horbinski CM, Garzotto M, Qian DZ, Beer TM, Kyprianou N. Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer. Cancer Res. 2010;70(20):7992–8002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Thadani-Mulero M, Portella L, Sun S, Sung M, Matov A, Vessella RL, et al. Androgen receptor splice variants determine taxane sensitivity in prostate cancer. Cancer Res. 2014;74(8):2270–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Petrylak DP, Tangen CM, Hussain MH, Lara PN Jr, Jones JA, Taplin ME, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med. 2004;351(15):1513–20.

    Article  CAS  PubMed  Google Scholar 

  20. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351(15):1502–12.

    Article  CAS  PubMed  Google Scholar 

  21. Mita AC, Figlin R, Mita MM. Cabazitaxel: more than a new taxane for metastatic castrate-resistant prostate cancer? Clin Cancer Res. 2012;18(24):6574–9.

    Article  CAS  PubMed  Google Scholar 

  22. Mita AC, Denis LJ, Rowinsky EK, Debono JS, Goetz AD, Ochoa L, et al. Phase I and pharmacokinetic study of XRP6258 (RPR 116258A), a novel taxane, administered as a 1-hour infusion every 3 weeks in patients with advanced solid tumors. Clin Cancer Res. 2009;15(2):723–30.

    Article  CAS  PubMed  Google Scholar 

  23. Bahl A, Oudard S, Tombal B, Ozguroglu M, Hansen S, Kocak I, et al. Impact of cabazitaxel on 2-year survival and palliation of tumour-related pain in men with metastatic castration-resistant prostate cancer treated in the TROPIC trial. Ann Oncol. 2013;24(9):2402–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels J-P, Kocak I, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet. 2010;376(9747):1147–54.

    Article  PubMed  Google Scholar 

  25. de Leeuw R, Berman-Booty LD, Schiewer MJ, Ciment SJ, Den RB, Dicker AP, et al. Novel actions of next-generation taxanes benefit advanced stages of prostate cancer. Clin Cancer Res. 2015;21(4):795–807.

    Article  PubMed Central  PubMed  Google Scholar 

  26. van Soest RJ, de Morrée ES, Kweldam CF, de Ridder CMA, Wiemer EAC, Mathijssen RHJ, et al. Targeting the androgen receptor confers in vivo cross-resistance between enzalutamide and docetaxel, but not cabazitaxel, in castration-resistant prostate cancer. Eur Urol. 2015;67(6):981–5.

    Article  PubMed  Google Scholar 

  27. Mezynski J, Pezaro C, Bianchini D, Zivi A, Sandhu S, Thompson E, et al. Antitumour activity of docetaxel following treatment with the CYP17A1 inhibitor abiraterone: clinical evidence for cross-resistance? Ann Oncol. 2012;23(11):2943–7.

    Article  CAS  PubMed  Google Scholar 

  28. Pezaro CJ, Omlin AG, Altavilla A, Lorente D, Ferraldeschi R, Bianchini D, et al. Activity of cabazitaxel in castration-resistant prostate cancer progressing after docetaxel and next-generation endocrine agents. Eur Urol. 2014;66(3):459–65.

    Article  CAS  PubMed  Google Scholar 

  29. Oudard S, Fizazi K, Sengeløv L, Daugaard G, Saad F, Hansen S, Hjälm-Eriksson M, Jassem J, Thiery-Vuillemin A, Caffo O, Castellano D, Mainwaring PN, Bernard J, Shen L, Chadjaa M, Sartor O. Cabazitaxel Versus Docetaxel As First-Line Therapy for Patients With Metastatic Castration-Resistant Prostate Cancer: A Randomized Phase III Trial-FIRSTANA. J Clin Oncol. 2017;35(28):3189–97.

    Google Scholar 

  30. Galletti G, Leach BI, Lam L, Tagawa ST. Mechanisms of resistance to systemic therapy in metastatic castration-resistant prostate cancer. Cancer Treat Rev. 2017;57:16–27.

    Article  CAS  PubMed  Google Scholar 

  31. Tagawa ST, Galletti G, Antonarakis ES, Tasaki S, Gjyrezi A, Worroll D, et al. Baseline analysis of circulating tumor cell (CTC) enumeration and androgen receptor (AR) localization in men with metastatic castration-resistant prostate cancer (mCRPC) in TAXTNERGY. J Clin Oncol. 2015;33(suppl):abstr 5031.

    Google Scholar 

  32. Antonarakis ES, Tagawa ST, Galletti G, Worroll D, Ballman K, Vanhuyse M, et al. Randomized, noncomparative, phase II trial of early switch from docetaxel to cabazitaxel or vice versa, with integrated biomarker analysis, in men with chemotherapy-naive, metastatic, castration-resistant prostate cancer. J Clin Oncol. 2017;35(28):3181–8.

    Google Scholar 

  33. Gravis G, Fizazi K, Joly F, Oudard S, Priou F, Esterni B, et al. Androgen-deprivation therapy alone or with docetaxel in non-castrate metastatic prostate cancer (GETUG-AFU 15): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14(2):149–58.

    Article  CAS  PubMed  Google Scholar 

  34. Gravis GB, Boher JM, Joly F, Oudard S, Albiges L, Priou F, Latorzeff I, Delva R, Krakowski I, Laguerre B, Rolland F, Theodore C, Deplanque G, Ferrero JM, Poussel D, Mourey L, Beuzeboc P, Habibian M, Soulie M, Fizazi K. Androgen deprivation therapy (ADT) plus docetaxel (D) versus ADT alone for hormone-naive metastatic prostate cancer (PCa): long-term analysis of the GETUG-AFU 15 phase III trial. J Clin Oncol. 2015;33(suppl 7):abstr 140.

    Article  Google Scholar 

  35. Sweeney CC, Chen Y, Carducci MA, Liu G, Jarrard D, Eisenberger MA, Wong Y, Hahn NM, Kohli M, Vogelzang N, Cooney M, Dreicer R, Picus J, Shevrin D, Hussain M, Garcia J, Dipaola R. Impact on overall survival (OS) with chemohormonal therapy versus hormonal therapy for hormone-sensitive newly metastatic prostate cancer (mPrCa): an ECOG-led phase III randomized trial. J Clin Oncol. 2014;32(suppl 5):abstr LBA2.

    Article  Google Scholar 

  36. Sweeney CC, Chen Y, Carducci MA, Liu G, Jarrard D, Eisenberger MA, Wong Y, Hahn NM, Kohli M, Vogelzang N, Cooney M, Dreicer R, Picus J, Shevrin D, Hussain M, Garcia J, Dipaola R. Chemohormonal therapy versus hormonal therapy for hormone naive high volume newly metastatic prostate cancer (PrCa): ECOG led phase III randomized trial. Ann Oncol. 2014;25(suppl 4):abstr 7560.

    Google Scholar 

  37. Fizazi K, Jenkins C, Tannock IF. Should docetaxel be standard of care for patients with metastatic hormone-sensitive prostate cancer? Pro and contra. Ann Oncol. 2015;26(8):1660–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Spears MR, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 2016;387(10024):1163–77.

    Google Scholar 

  39. Fizazi K, Faivre L, Lesaunier F, Delva R, Gravis G, Rolland F, et al. Androgen deprivation therapy plus docetaxel and estramustine versus androgen deprivation therapy alone for high-risk localised prostate cancer (GETUG 12): a phase 3 randomised controlled trial. Lancet Oncol. 2015;16(7):787–94.

    Article  CAS  PubMed  Google Scholar 

  40. Bhangal G, Halford S, Wang J, Roylance R, Shah R, Waxman J. Expression of the multidrug resistance gene in human prostate cancer. Urol Oncol. 2000;5(3):118–21.

    Article  CAS  PubMed  Google Scholar 

  41. van Brussel JP, van Steenbrugge GJ, Romijn JC, Schroder FH, Mickisch GH. Chemosensitivity of prostate cancer cell lines and expression of multidrug resistance-related proteins. Eur J Cancer. 1999;35(4):664–71.

    Article  PubMed  Google Scholar 

  42. Sissung TM, Baum CE, Deeken J, Price DK, Aragon-Ching J, Steinberg SM, et al. ABCB1 genetic variation influences the toxicity and clinical outcome of patients with androgen-independent prostate cancer treated with docetaxel. Clin Cancer Res. 2008;14(14):4543–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ferrandina G, Zannoni GF, Martinelli E, Paglia A, Gallotta V, Mozzetti S, et al. Class III beta-tubulin overexpression is a marker of poor clinical outcome in advanced ovarian cancer patients. Clin Cancer Res. 2006;12(9):2774–9.

    Article  CAS  PubMed  Google Scholar 

  44. Seve P, Dumontet C. Is class III beta-tubulin a predictive factor in patients receiving tubulin-binding agents? Lancet Oncol. 2008;9(2):168–75.

    Article  CAS  PubMed  Google Scholar 

  45. Terry S, Ploussard G, Allory Y, Nicolaiew N, Boissiere-Michot F, Maille P, et al. Increased expression of class III beta-tubulin in castration-resistant human prostate cancer. Br J Cancer. 2009;101(6):951–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ploussard G, Terry S, Maille P, Allory Y, Sirab N, Kheuang L, et al. Class III beta-tubulin expression predicts prostate tumor aggressiveness and patient response to docetaxel-based chemotherapy. Cancer Res. 2010;70(22):9253–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Tsourlakis MC, Weigand P, Grupp K, Kluth M, Steurer S, Schlomm T, et al. betaIII-tubulin overexpression is an independent predictor of prostate cancer progression tightly linked to ERG fusion status and PTEN deletion. Am J Pathol. 2014;184(3):609–17.

    Article  CAS  PubMed  Google Scholar 

  48. Galletti G, Matov A, Beltran H, Fontugne J, Miguel Mosquera J, Cheung C, et al. ERG induces taxane resistance in castration-resistant prostate cancer. Nat Commun. 2014;5:5548.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1(1):34–45.

    Article  CAS  PubMed  Google Scholar 

  50. Gelmann EP. Molecular biology of the androgen receptor. J Clin Oncol. 2002;20(13):3001–15.

    Article  CAS  PubMed  Google Scholar 

  51. Sprenger CC, Plymate SR. The link between androgen receptor splice variants and castration-resistant prostate cancer. Hormones Cancer. 2014;5(4):207–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E, et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 2009;69(1):16–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Sun S, Sprenger CC, Vessella RL, Haugk K, Soriano K, Mostaghel EA, et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest. 2010;120(8):2715–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Nakazawa M, et al. Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol. 2015;1(5):582–91.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Taplin ME, Balk SP. Has the time arrived for biomarker-directed therapy in castration-resistant prostate cancer? JAMA Oncol. 2015;1(5):577–9.

    Article  PubMed  Google Scholar 

  56. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–8.

    Article  CAS  PubMed  Google Scholar 

  57. Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, Asangani IA, et al. Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell. 2011;19(5):664–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Vale RD. The molecular motor toolbox for intracellular transport. Cell. 2003;112(4):467–80.

    Article  CAS  PubMed  Google Scholar 

  59. Tan MH, De S, Bebek G, Orloff MS, Wesolowski R, Downs-Kelly E, et al. Specific kinesin expression profiles associated with taxane resistance in basal-like breast cancer. Breast Cancer Res Treat. 2012;131(3):849–58.

    Article  CAS  PubMed  Google Scholar 

  60. Kapitein LC, Peterman EJ, Kwok BH, Kim JH, Kapoor TM, Schmidt CF. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature. 2005;435(7038):114–8.

    Article  CAS  PubMed  Google Scholar 

  61. Wissing MD, De Morree ES, Dezentje VO, Buijs JT, De Krijger RR, Smit VT, et al. Nuclear Eg5 (kinesin spindle protein) expression predicts docetaxel response and prostate cancer aggressiveness. Oncotarget. 2014;5(17):7357–67.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Ganguly A, Yang H, Pedroza M, Bhattacharya R, Cabral F. Mitotic centromere-associated kinesin (MCAK) mediates paclitaxel resistance. J Biol Chem. 2011;286(42):36378–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Sircar K, Huang H, Hu L, Liu Y, Dhillon J, Cogdell D, et al. Mitosis phase enrichment with identification of mitotic centromere-associated kinesin as a therapeutic target in castration-resistant prostate cancer. PLoS One. 2012;7(2):e31259.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Izumi K, Fang LY, Mizokami A, Namiki M, Li L, Lin WJ, et al. Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. EMBO Mol Med. 2013;5(9):1383–401.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Qian DZ, Rademacher BL, Pittsenbarger J, Huang CY, Myrthue A, Higano CS, et al. CCL2 is induced by chemotherapy and protects prostate cancer cells from docetaxel-induced cytotoxicity. Prostate. 2010;70(4):433–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Mahon KL, Lin HM, Castillo L, Lee BY, Lee-Ng M, Chatfield MD, et al. Cytokine profiling of docetaxel-resistant castration-resistant prostate cancer. Br J Cancer. 2015;112(8):1340–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Clark AS, West K, Streicher S, Dennis PA. Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther. 2002;1(9):707–17.

    CAS  PubMed  Google Scholar 

  68. West KA, Castillo SS, Dennis PA. Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist Updat. 2002;5(6):234–48.

    Article  CAS  PubMed  Google Scholar 

  69. Plymate SR, Bhatt RS, Balk SP. Taxane resistance in prostate cancer mediated by AR-independent GATA2 regulation of IGF2. Cancer Cell. 2015;27(2):158–9.

    Article  CAS  PubMed  Google Scholar 

  70. Vidal SJ, Rodriguez-Bravo V, Quinn SA, Rodriguez-Barrueco R, Lujambio A, Williams E, et al. A targetable GATA2-IGF2 axis confers aggressiveness in lethal prostate cancer. Cancer Cell. 2015;27(2):223–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V, Castillo-Martin M, Quinn SA, Rodriguez-Barrueco R, et al. Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell. 2012;22(3):373–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paraskevi (Evi) Giannakakou Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Giannakakou, P.(., Galletti, G. (2018). Microtubules in Prostate Cancer. In: Robinson, B., Mosquera, J., Ro, J., Divatia, M. (eds) Precision Molecular Pathology of Prostate Cancer. Molecular Pathology Library. Springer, Cham. https://doi.org/10.1007/978-3-319-64096-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64096-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64094-5

  • Online ISBN: 978-3-319-64096-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics