Tyrosine Kinase Receptor Signaling in Prostate Cancer

  • Heather Johnson
  • Lingwu Chen
  • Kefeng Xiao
  • Jenny L. Persson
Part of the Molecular Pathology Library book series (MPLB)


Prostate cancer (PCa) is the most common type of cancer in men and one of the leading causes of cancer-related death in Western world (Jemal et al., CA Cancer J Clin 57(1):43–66, 2007; Siegel et al., CA Cancer J Clin 63(1):11–30, 2013). Elevated levels of the male hormones, androgens, are known to contribute to development of PCa. As the growth of PCa at initial stage is dependent on hormones, hormone-deprivation therapies are therefore used as standard treatment to induce tumor regression in PCa patients (Litvinov et al., Proc Natl Acad Sci U S A 103(41):15085–15090, 2006). Despite hormone-deprivation treatment, most of treated PCa will resume the growth and become hormone-refractory, also termed castration-resistant PCa (CRPC) (Litvinov et al., Proc Natl Acad Sci U S A 103(41):15085–15090, 2006; Lindzey et al., Vitam Horm 49:383–432, 1994). CRPC is no longer responsive to most of the available therapies and is highly invasive with metastatic potentials to disseminate to distant organs including the lung, bone, and brain (Semenas et al., Curr Drug Targets 13(10):1308–1323, 2012). Thus, CRPC represents a major clinical challenge.


EGFR signaling Tyrosine kinase inhibitors VEGF inhibitors PDGF signaling IGFR inhibitors 



This work was supported by the grants from the Swedish Cancer Society, the Swedish National Research Council, the Swedish Children Foundation, Malmö Hospital Cancer Foundation, Malmö Hospital Foundation, and Gunnar Nilsson Cancer Foundation. Crafoord Foundation to JLP.


  1. 1.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics. CA Cancer J Clin. 2007;57(1):43–66.PubMedCrossRefGoogle Scholar
  2. 2.
    Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2013;63(1):11–30.PubMedCrossRefGoogle Scholar
  3. 3.
    Litvinov IV, Vander Griend DJ, Antony L, Dalrymple S, De Marzo AM, Drake CG, Isaacs JT. Androgen receptor as a licensing factor for DNA replication in androgen-sensitive prostate cancer cells. Proc Natl Acad Sci U S A. 2006;103(41):15085–90.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Lindzey J, Kumar MV, Grossman M, Young C, Tindall DJ. Molecular mechanisms of androgen action. Vitam Horm. 1994;49:383–432.PubMedCrossRefGoogle Scholar
  5. 5.
    Semenas J, Allegrucci C, Boorjian SA, Mongan NP, Persson JL. Overcoming drug resistance and treating advanced prostate cancer. Curr Drug Targets. 2012;13(10):1308–23.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kumar R, Betney R, Li J, Thompson EB, McEwan IJ. Induced alpha-helix structure in AF1 of the androgen receptor upon binding transcription factor TFIIF. Biochemistry. 2004;43(11):3008–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Cunha GR, Donjacour AA. Mesenchymal-epithelial interactions in the growth and development of the prostate. Cancer Treat Res. 1989;46:159–75.PubMedCrossRefGoogle Scholar
  8. 8.
    Byrne RL, Leung H, Neal DE. Peptide growth factors in the prostate as mediators of stromal epithelial interaction. Br J Urol. 1996;77(5):627–33.PubMedCrossRefGoogle Scholar
  9. 9.
    Reynolds AR, Kyprianou N. Growth factor signalling in prostatic growth: significance in tumour development and therapeutic targeting. Br J Pharmacol. 2006;147(Suppl 2):S144–52.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117–34.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411(6835):355–65.PubMedCrossRefGoogle Scholar
  12. 12.
    King N, Carroll SB. A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc Natl Acad Sci U S A. 2001;98(26):15032–7.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    King N. The unicellular ancestry of animal development. Dev Cell. 2004;7(3):313–25.PubMedCrossRefGoogle Scholar
  14. 14.
    Bethani I, Skånland SS, Dikic I, Acker-Palmer A. Spatial organization of transmembrane receptor signalling. EMBO J. 2010;29(16):2677–88.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lemmon MA. Ligand-induced ErbB receptor dimerization. Exp Cell Res. 2009;315(4):638–48.PubMedCrossRefGoogle Scholar
  16. 16.
    Cox MC, Permenter M, Figg WD. Angiogenesis and prostate cancer: important laboratory and clinical findings. Curr Oncol Rep. 2005;7(3):215–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Casaletto JB, McClatchey AI. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer. 2012;12(6):387–400.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Chong CR, Jänne PA. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med. 2013;19(11):1389–400.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Traish AM, Wotiz HH. Prostatic epidermal growth factor receptors and their regulation by androgens. Endocrinology. 1987;121(4):1461–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Hofer DR, Sherwood ER, Bromberg WD, Mendelsohn J, Lee C, Kozlowski JM. Autonomous growth of androgen-independent human prostatic carcinoma cells: role of transforming growth factor alpha. Cancer Res. 1991;51(11):2780–5.PubMedGoogle Scholar
  21. 21.
    Wells A. EGF receptor. Int J Biochem Cell Biol. 1999;31(6):637–43.PubMedCrossRefGoogle Scholar
  22. 22.
    Scher HI, Sarkis A, Reuter V, Cohen D, Netto G, Petrylak D, Lianes P, Fuks Z, Mendelsohn J, Cordon-Cardo C. Changing pattern of expression of the epidermal growth factor receptor and transforming growth factor alpha in the progression of prostatic neoplasms. Clin Cancer Res. 1995;1(5):545–50.PubMedGoogle Scholar
  23. 23.
    Di Lorenzo G, Tortora G, D’Armiento FP, De Rosa G, Staibano S, Autorino R, D’Armiento M, De Laurentiis M, De Placido S, Catalano G, Bianco AR, Ciardiello F. Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin Cancer Res. 2002;8(11):3438–44.PubMedGoogle Scholar
  24. 24.
    Chott A, Sun Z, Morganstern D, Pan J, Li T, Susani M, Mosberger I, Upton MP, Bubley GJ, Balk SP. Tyrosine kinases expressed in vivo by human prostate cancer bone marrow metastases and loss of the type 1 insulin-like growth factor receptor. Am J Pathol. 1999;155(4):1271–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Bratland A, Boender PJ, Høifødt HK, Østensen IH, Ruijtenbeek R, Wang MY, Berg JP, Lilleby W, Fodstad Ø, Ree AH. Osteoblast-induced EGFR/ERBB2 signaling in androgen-sensitive prostate carcinoma cells characterized by multiplex kinase activity profiling. Clin Exp Metastasis. 2009;26(5):485–96.PubMedCrossRefGoogle Scholar
  26. 26.
    Zheng Y, Li X, Qian X, Wang Y, Lee JH, Xia Y, Hawke DH, Zhang G, Lyu J, Lu Z. Secreted and O-GlcNAcylated MIF binds to the human EGF receptor and inhibits its activation. Nat Cell Biol. 2015.
  27. 27.
    Gan Y, Shi C, Inge L, Hibner M, Balducci J, Huang Y. Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells. Oncogene. 2010;29(35):4947–58.PubMedCrossRefGoogle Scholar
  28. 28.
    Fedi P, Pierce JH, di Fiore PP, Kraus MH. Efficient coupling with phosphatidylinositol 3-kinase, but not phospholipase C gamma or GTPase-activating protein, distinguishes ErbB-3 signaling from that of other ErbB/EGFR family members. Mol Cell Biol. 1994;14(1):492–500.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, Arora VK, Le C, Koutcher J, Scher H, Scardino PT, Rosen N, Sawyers CL. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell. 2011;19(5):575–86.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Rodrigues GA, Falasca M, Zhang Z, Ong SH, Schlessinger J. A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling. Mol Cell Biol. 2000;20(4):1448–59.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Roberts JT, Essenhigh DM. Adenocarcinoma of prostate in 40-year-old body-builder. Lancet. 1986;2(8509):742.PubMedCrossRefGoogle Scholar
  32. 32.
    Hsing AW. Hormones and prostate cancer: what’s next? Epidemiol Rev. 2001;23(1):42–58.PubMedCrossRefGoogle Scholar
  33. 33.
    Wegiel B, Evans S, Hellsten R, Otterbein LE, Bjartell A, Persson JL. Molecular pathways in the progression of hormone-independent and metastatic prostate cancer. Curr Cancer Drug Targets. 2010;10(4):392–401.PubMedCrossRefGoogle Scholar
  34. 34.
    Semenas J, Hedblom A, Miftakhova RR, Sarwar M, Larsson R, Shcherbina L, Johansson ME, Härkönen P, Sterner O, Persson JL. The role of PI3K/AKT-related PIP5K1α[alpha] and the discovery of its selective inhibitor for treatment of advanced prostate cancer. Proc Natl Acad Sci U S A. 2014;111(35):E3689–98.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hsu CL, Chen YL, Ting HJ, Lin WJ, Yang Z, Zhang Y, Wang L, Wu CT, Chang HC, Yeh S, Pimplikar SW, Chang C. Androgen receptor (AR) NH2- and COOH-terminal interactions result in the differential influences on the AR-mediated transactivation and cell growth. Mol Endocrinol. 2005;19(2):350–61.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang L, Hsu CL, Chang C. Androgen receptor corepressors: an overview. Prostate. 2005;63(2):117–30.PubMedCrossRefGoogle Scholar
  37. 37.
    Craft N, Shostak Y, Carey M, Sawyers CL. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med. 1999;5(3):280–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Yeh S, Lin HK, Kang HY, Thin TH, Lin MF, Chang C. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci U S A. 1999;96(10):5458–63.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Mutations of the BRAF gene in human cancer. Nature. 2002 Jun 27;417(6892):949–54.PubMedCrossRefGoogle Scholar
  40. 40.
    Yun CH, Boggon TJ, Li Y, Woo MS, Greulich H, Meyerson M, Eck MJ. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell. 2007;11(3):217–27.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Greulich H, Chen TH, Feng W, Jänne PA, Alvarez JV, Zappaterra M, Bulmer SE, Frank DA, Hahn WC, Sellers WR, Meyerson M. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med. 2005;2(11):e313.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Campoli M, Ferris R, Ferrone S, Wang X. Immunotherapy of malignant disease with tumor antigen-specific monoclonal antibodies. Clin Cancer Res. 2010;16(1):11–20.PubMedCrossRefGoogle Scholar
  43. 43.
    Muhammad S, Jiang Z, Liu Z, Kaur K, Wang X. The role of EGFR monoclonal antibodies (MoABs) cetuximab/panitumab, and BRAF inhibitors in BRAF mutated colorectal cancer. J Gastrointest Oncol. 2013;4(1):72–81.Google Scholar
  44. 44.
    Festuccia C, Angelucci A, Gravina GL, Biordi L, Millimaggi D, Muzi P, Vicentini C, Bologna M. Epidermal growth factor modulates prostate cancer cell invasiveness regulating urokinase-type plasminogen activator activity. EGF-receptor inhibition may prevent tumor cell dissemination. Thromb Haemost. 2005;93(5):964–75.PubMedGoogle Scholar
  45. 45.
    Ross JS, Gray KE, Webb IJ, Gray GS, Rolfe M, Schenkein DP, Nanus DM, Millowsky MI, Bander NH. Antibody-based therapeutics: focus on prostate cancer. Cancer Metastasis Rev. 2005;24(4):521–37.PubMedCrossRefGoogle Scholar
  46. 46.
    Kwabi-Addo B, Ozen M, Ittmann M. The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer. 2004;11(4):709–24.PubMedCrossRefGoogle Scholar
  47. 47.
    Aigner A, Butscheid M, Kunkel P, Krause E, Lamszus K, Wellstein A, Czubayko F. An FGF-binding protein (FGF-BP) exerts its biological function by parallel paracrine stimulation of tumor cell and endothelial cell proliferation through FGF-2 release. Int J Cancer. 2001;92(4):510–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Huss WJ, Barrios RJ, Foster BA, Greenberg NM. Differential expression of specific FGF ligand and receptor isoforms during angiogenesis associated with prostate cancer progression. Prostate. 2003;54(1):8–16.PubMedCrossRefGoogle Scholar
  49. 49.
    Giri D, Ropiquet F, Ittmann M. FGF-10 is expressed at low levels in the human prostate. Prostate. 2000;44(4):334–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Ropiquet F, Giri D, Kwabi-Addo B, Schmidt K, Ittmann M. Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clin Cancer Res. 1999;5(5):1063–71.PubMedGoogle Scholar
  51. 51.
    Takahashi H. Studies on the expression of fibroblast growth factors and fibroblast growth factor receptors in human prostate. Nihon Hinyokika Gakkai Zasshi. 1998;89(10):836–45.PubMedGoogle Scholar
  52. 52.
    Naimi B, Latil A, Fournier G, Mangin P, Cussenot O, Berthon P. Down-regulation of (IIIb) and (IIIc) isoforms of fibroblast growth factor receptor 2 (FGFR2) is associated with malignant progression in human prostate. Prostate. 2002;52(3):245–52.PubMedCrossRefGoogle Scholar
  53. 53.
    Edwards J, Krishna NS, Witton CJ, Bartlett JM. Gene amplifications associated with the development of hormone-resistant prostate cancer. Clin Cancer Res. 2003;9(14):5271–81.PubMedGoogle Scholar
  54. 54.
    Freeman KW, Welm BE, Gangula RD, Rosen JM, Ittmann M, Greenberg NM, Spencer DM. Inducible prostate intraepithelial neoplasia with reversible hyperplasia in conditional FGFR1-expressing mic. Cancer Res. 2003;63(23):8256–63.PubMedGoogle Scholar
  55. 55.
    Li Y, Basilico C, Mansukhani A. Cell transformation by fibroblast growth factors can be suppressed by truncated fibroblast growth factor receptors. Mol Cell Biol. 1994;14(11):7660–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Gowardhan B, Douglas DA, Mathers ME, McKie AB, McCracken SR, Robson CN, Leung HY. Evaluation of the fibroblast growth factor system as a potential target for therapy in human prostate cancer. Br J Cancer. 2005;92(2):320–7.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Sahadevan K, Darby S, Leung HY, Mathers ME, Robson CN, Gnanapragasam VJ. Selective over-expression of fibroblast growth factor receptors 1 and 4 in clinical prostate cancer. J Pathol. 2007;213(1):82–90.PubMedCrossRefGoogle Scholar
  58. 58.
    Corn PG, Wang F, McKeehan WL, Navone N. Targeting fibroblast growth factor pathways in prostate cancer. Clin Cancer Res. 2013;19(21):5856–66.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ferrer FA, Miller LJ, Andrawis RI, Kurtzman SH, Albertsen PC, Laudone VP, Kreutzer DL. Vascular endothelial growth factor (VEGF) expression in human prostate cancer: in situ and in vitro expression of VEGF by human prostate cancer cells. J Urol. 1997;157(6):2329–33.PubMedCrossRefGoogle Scholar
  60. 60.
    Hrouda D, Nicol DL, Gardiner RA. The role of angiogenesis in prostate development and the pathogenesis of prostate cancer. Urol Res. 2003;30(6):347–55.PubMedGoogle Scholar
  61. 61.
    Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23(5):1011–27.PubMedCrossRefGoogle Scholar
  62. 62.
    Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond). 2005;109(3):227–41.CrossRefGoogle Scholar
  63. 63.
    de Brot S, Ntekim A, Cardenas R, James V, Allegrucci C, Heery DM, Bates DO, Ødum N, Persson JL, Mongan NP. Regulation of vascular endothelial growth factor in prostate cancer. Endocr Relat Cancer. 2015;22(3):R107–23.PubMedCrossRefGoogle Scholar
  64. 64.
    Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013;13(12):871–82.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Sooriakumaran P, Kaba R. Angiogenesis and the tumour hypoxia response in prostate cancer: a review. Int J Surg. 2005;3(1):61–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353–64.PubMedCrossRefGoogle Scholar
  68. 68.
    Weingärtner K, Ben-Sasson SA, Stewart R, Richie JP, Riedmiller H, Folkman J. Endothelial cell proliferation activity in benign prostatic hyperplasia and prostate cancer: an in vitro model for assessment. J Urol. 1998;159(2):465–70.PubMedCrossRefGoogle Scholar
  69. 69.
    Wegiel B, Bjartell A, Ekberg J, Gadaleanu V, Brunhoff C, Persson JL. A role for cyclin A1 in mediating the autocrine expression of vascular endothelial growth factor in prostate cancer. Oncogene. 2005;24(42):6385–93.PubMedCrossRefGoogle Scholar
  70. 70.
    Köllermann J, Helpap B. Expression of vascular endothelial growth factor (VEGF) and VEGF receptor Flk-1 in benign, premalignant, and malignant prostate tissue. Am J Clin Pathol. 2001;116(1):115–21.PubMedCrossRefGoogle Scholar
  71. 71.
    Chen TT, Luque A, Lee S, Anderson SM, Segura T, Iruela-Arispe ML. Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J Cell Biol. 2010;188(4):595–609.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Sterling JA, Edwards JR, Martin TJ, Mundy GR. Advances in the biology of bone metastasis: how the skeleton affects tumor behavior. Bone. 2011;48(1):6–15.PubMedCrossRefGoogle Scholar
  73. 73.
    Chen J, De S, Brainard J, Byzova TV. Metastatic properties of prostate cancer cells are controlled by VEGF. Cell Commun Adhes. 2004;11(1):1–11.PubMedCrossRefGoogle Scholar
  74. 74.
    Yavropoulou MP, van Lierop AH, Hamdy NA, Rizzoli R, Papapoulos SE. Serum sclerostin levels in Paget’s disease and prostate cancer with bone metastases with a wide range of bone turnover. Bone. 2012;51(1):153–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Roberts JA, Zhou M, Park YW, Ro JY. Intraductal carcinoma of prostate: a comprehensive and concise review. Korean J Pathol. 2013;47(4):307–15.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Borre M, Nerstrøm B, Overgaard J. Association between immunohistochemical expression of vascular endothelial growth factor (VEGF), VEGF-expressing neuroendocrine-differentiated tumor cells, and outcome in prostate cancer patients subjected to watchful waiting. Clin Cancer Res. 2000;6(5):1882–90.PubMedGoogle Scholar
  77. 77.
    Jackson MW, Roberts JS, Heckford SE, Ricciardelli C, Stahl J, Choong C, Horsfall DJ, Tilley WD. A potential autocrine role for vascular endothelial growth factor in prostate cancer. Cancer Res. 2002;62(3):854–9.PubMedGoogle Scholar
  78. 78.
    Wegiel B, Bjartell A, Tuomela J, Dizeyi N, Tinzl M, Helczynski L, Nilsson E, Otterbein LE, Härkönen P, Persson JL. Multiple cellular mechanisms related to cyclin A1 in prostate cancer invasion and metastasis. J Natl Cancer Inst. 2008;100(14):1022–36.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Aragon-Ching JB, Dahut WL. VEGF inhibitors and prostate cancer therapy. Curr Mol Pharmacol. 2009;2(2):161–8.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Trisciuoglio D, Iervolino A, Zupi G, Del Bufalo D. Involvement of PI3K and MAPK signaling in bcl-2-induced vascular endothelial growth factor expression in melanoma cells. Mol Biol Cell. 2005;16(9):4153–62.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Nakayama M, Berger P. Coordination of VEGF receptor trafficking and signaling by coreceptors. Exp Cell Res. 2013;319(9):1340–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Lu KV, Chang JP, Parachoniak CA, Pandika MM, Aghi MK, Meyronet D, Isachenko N, Fouse SD, Phillips JJ, Cheresh DA, Park M, Bergers G. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell. 2012;22(1):21–35.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Xie Q, Vande Woude GF, Berens ME. RTK inhibition: looking for the right pathways toward a miracle. Future Oncol. 2012;8(11):1397–400.PubMedCrossRefGoogle Scholar
  84. 84.
    Figg WD, Kruger EA, Price DK, Kim S, Dahut WD. Inhibition of angiogenesis: treatment options for patients with metastatic prostate cancer. Investig New Drugs. 2002;20(2):183–94.CrossRefGoogle Scholar
  85. 85.
    Yu EM, Jain M, Aragon-Ching JB. Angiogenesis inhibitors in prostate cancer therapy. Discov Med. 2010;10(55):521–30.PubMedGoogle Scholar
  86. 86.
    Twardowski P, Stadler WM, Frankel P, Lara PN, Ruel C, Chatta G, Heath E, Quinn DI, Gandara DR. Phase II study of Aflibercept (VEGF-Trap) in patients with recurrent or metastatic urothelial cancer, a California Cancer Consortium Trial. Urology. 2010;76(4):923–6.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther. 2008;7(10):3129–40.PubMedCrossRefGoogle Scholar
  88. 88.
    Grothey A, Galanis E. Targeting angiogenesis: progress with anti-VEGF treatment with large molecules. Nat Rev Clin Oncol. 2009;6(9):507–18.PubMedCrossRefGoogle Scholar
  89. 89.
    Paulsson J, Ehnman M, Östman A. PDGF receptors in tumor biology: prognostic and predictive potential. Future Oncol. 2014;10(9):1695–708.PubMedCrossRefGoogle Scholar
  90. 90.
    Zhao Y, Haginoya K, Sun G, Dai H, Onuma A, Iinuma K. Platelet-derived growth factor and its receptors are related to the progression of human muscular dystrophy: an immunohistochemical study. J Pathol. 2003;201(1):149–59.PubMedCrossRefGoogle Scholar
  91. 91.
    Sethi S, Macoska J, Chen W, Sarkar FH. Molecular signature of epithelial-mesenchymal transition (EMT) in human prostate cancer bone metastasis. Am J Transl Res. 2010;3(1):90–9.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Chung LW, Li W, Gleave ME, Hsieh JT, Wu HC, Sikes RA, Zhau HE, Bandyk MG, Logothetis CJ, Rubin JS, et al. Human prostate cancer model: roles of growth factors and extracellular matrices. J Cell Biochem Suppl. 1992;16H:99–105.PubMedCrossRefGoogle Scholar
  93. 93.
    Chan MC, Hilyard AC, Wu C, Davis BN, Hill NS, Lal A, Lieberman J, Lagna G, Hata A. Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression. EMBO J. 2010;29(3):559–73.PubMedCrossRefGoogle Scholar
  94. 94.
    Kong D, Banerjee S, Huang W, Li Y, Wang Z, Kim HR, Sarkar FH. Mammalian target of rapamycin repression by 3,3′-diindolylmethane inhibits invasion and angiogenesis in platelet-derived growth factor-D-overexpressing PC3 cells. Cancer Res. 2008;68(6):1927–34.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Kong D, Wang Z, Sarkar SH, Li Y, Banerjee S, Saliganan A, Kim HR, Cher ML, Sarkar FH. Platelet-derived growth factor-D overexpression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells. Stem Cells. 2008;26(6):1425–35.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Ustach CV, Kim HR. Platelet-derived growth factor D is activated by urokinase plasminogen activator in prostate carcinoma cells. Mol Cell Biol. 2005;25(14):6279–88.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Ko YJ, Small EJ, Kabbinavar F, Chachoua A, Taneja S, Reese D, DePaoli A, Hannah A, Balk SP, Bubley GJ. A multi-institutional phase II study of SU101, a platelet-derived growth factor receptor inhibitor, for patients with hormone-refractory prostate cancer. Clin Cancer Res. 2001;7(4):800–5.PubMedGoogle Scholar
  98. 98.
    Uehara H, Kim SJ, Karashima T, Shepherd DL, Fan D, Tsan R, Killion JJ, Logothetis C, Mathew P, Fidler IJ. Effects of blocking platelet-derived growth factor-receptor signaling in a mouse model of experimental prostate cancer bone metastases. J Natl Cancer Inst. 2003;95(6):458–70.PubMedCrossRefGoogle Scholar
  99. 99.
    Hu P, Margolis B, Skolnik EY, Lammers R, Ullrich A, Schlessinger J. Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors. Mol Cell Biol. 1992;12(3):981–90.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Choi MH, Lee IK, Kim GW, Kim BU, Han YH, Yu DY, Park HS, Kim KY, Lee JS, Choi C, Bae YS, Lee BI, Rhee SG, Kang SW. Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature. 2005;435(7040):347–53.PubMedCrossRefGoogle Scholar
  101. 101.
    van der HG P. Smart drugs in prostate cancer. Eur Urol. 2004;45(1):1–17.CrossRefGoogle Scholar
  102. 102.
    Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2(5):561–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Pietras K, Ostman A, Sjöquist M, Buchdunger E, Reed RK, Heldin CH, Rubin K. Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res. 2001;61(7):2929–34.PubMedGoogle Scholar
  104. 104.
    George D. Platelet-derived growth factor receptors: a therapeutic target in solid tumors. Semin Oncol. 2001;28(5 Suppl 17):27–33.PubMedCrossRefGoogle Scholar
  105. 105.
    George DJ. Receptor tyrosine kinases as rational targets for prostate cancer treatment: platelet-derived growth factor receptor and imatinib mesylate. Urology. 2002;60(3 Suppl 1):115–21.PubMedCrossRefGoogle Scholar
  106. 106.
    Savage DG, Antman KH. Imatinib mesylate—a new oral targeted therapy. N Engl J Med. 2002;346(9):683–93.PubMedCrossRefGoogle Scholar
  107. 107.
    David-Beabes GL, Overman MJ, Petrofski JA, Campbell PA, de Marzo AM, Nelson WG. Doxorubicin-resistant variants of human prostate cancer cell lines DU 145, PC-3, PPC-1, and TSU-PR1: characterization of biochemical determinants of antineoplastic drug sensitivity. Int J Oncol. 2000;17(6):1077–86.PubMedGoogle Scholar
  108. 108.
    Paterson SC, Smith KD, Holyoake TL, Jørgensen HG. Is there a cloud in the silver lining for imatinib? Br J Cancer. 2003;88(7):983–7.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Wu JD, Haugk K, Woodke L, Nelson P, Coleman I, Plymate SR. Interaction of IGF signaling and the androgen receptor in prostate cancer progression. J Cell Biochem. 2006;99(2):392–401.PubMedCrossRefGoogle Scholar
  110. 110.
    Wolk A, Mantzoros CS, Andersson SO, Bergström R, Signorello LB, Lagiou P, Adami HO, Trichopoulos D. Insulin-like growth factor 1 and prostate cancer risk: a population-based, case-control study. J Natl Cancer Inst. 1998;90(12):911–5.PubMedCrossRefGoogle Scholar
  111. 111.
    Pollak M, Beamer W, Zhang JC. Insulin-like growth factors and prostate cancer. Cancer Metastasis Rev. 1998–1999;17(4):383–90.PubMedCrossRefGoogle Scholar
  112. 112.
    Harman SM, Metter EJ, Blackman MR, Landis PK, Carter HB, Baltimore Longitudinal Study on Aging. Serum levels of insulin-like growth factor I (IGF-I), IGF-II, IGF-binding protein-3, and prostate-specific antigen as predictors of clinical prostate cancer. J Clin Endocrinol Metab. 2000;85(11):4258–65.PubMedCrossRefGoogle Scholar
  113. 113.
    Monti S, Proietti-Pannunzi L, Sciarra A, Lolli F, Falasca P, Poggi M, Celi FS, Toscano V. The IGF axis in prostate cancer. Curr Pharm Des. 2007;13(7):719–27.PubMedCrossRefGoogle Scholar
  114. 114.
    Burfeind P, Chernicky CL, Rininsland F, Ilan J, Ilan J. Antisense RNA to the type I insulin-like growth factor receptor suppresses tumor growth and prevents invasion by rat prostate cancer cells in vivo. Proc Natl Acad Sci U S A. 1996;93(14):7263–8.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Ozkan EE. Plasma and tissue insulin-like growth factor-I receptor (IGF-IR) as a prognostic marker for prostate cancer and anti-IGF-IR agents as novel therapeutic strategy for refractory cases: a review. Mol Cell Endocrinol. 2011;344(1–2):1–24.PubMedCrossRefGoogle Scholar
  116. 116.
    Nickerson T, Chang F, Lorimer D, Smeekens SP, Sawyers CL, Pollak M. In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Cancer Res. 2001;61(16):6276–80.PubMedGoogle Scholar
  117. 117.
    Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst. 2000;92(18):1472–89.PubMedCrossRefGoogle Scholar
  118. 118.
    Rosenthal SM, Brown EJ, Brunetti A, Goldfine ID. Fibroblast growth factor inhibits insulin-like growth factor-II (IGF-II) gene expression and increases IGF-I receptor abundance in BC3H-1 muscle cells. Mol Endocrinol. 1991;5(5):678–84.PubMedCrossRefGoogle Scholar
  119. 119.
    Gennigens C, Menetrier-Caux C, Droz JP. Insulin-like growth factor (IGF) family and prostate cancer. Crit Rev Oncol Hematol. 2006;58(2):124–45.PubMedCrossRefGoogle Scholar
  120. 120.
    Goel HL, Fornaro M, Moro L, Teider N, Rhim JS, King M, Languino LR. Selective modulation of type 1 insulin-like growth factor receptor signaling and functions by beta1 integrins. J Cell Biol. 2004;166(3):407–18.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Damsky CH, Ilić D. Integrin signaling: it’s where the action is. Curr Opin Cell Biol. 2002;14(5):594–602.PubMedCrossRefGoogle Scholar
  122. 122.
    Fornaro M, Manes T, Languino LR. Integrins and prostate cancer metastases. Cancer Metastasis Rev. 2001;20(3–4):321–31.PubMedCrossRefGoogle Scholar
  123. 123.
    Djavan B, Waldert M, Seitz C, Marberger M. Insulin-like growth factors and prostate cancer. World J Urol. 2001;19(4):225–33.PubMedCrossRefGoogle Scholar
  124. 124.
    Pandini G, Mineo R, Frasca F, Roberts CT Jr, Marcelli M, Vigneri R, Belfiore A. Androgens up-regulate the insulin-like growth factor-I receptor in prostate cancer cells. Cancer Res. 2005;65(5):1849–57.PubMedCrossRefGoogle Scholar
  125. 125.
    Mohan S, Baylink DJ. IGF-binding proteins are multifunctional and act via IGF-dependent and -independent mechanisms. J Endocrinol. 2002;175(1):19–31.PubMedCrossRefGoogle Scholar
  126. 126.
    Kahn CR. The molecular mechanism of insulin action. Annu Rev Med. 1985;36:429–51.PubMedCrossRefGoogle Scholar
  127. 127.
    Plymate SR, Haugk K, Coleman I, Woodke L, Vessella R, Nelson P, Montgomery RB, Ludwig DL, Wu JD. An antibody targeting the type I insulin-like growth factor receptor enhances the castration-induced response in androgen-dependent prostate cancer. Clin Cancer Res. 2007;13(21):6429–39.PubMedCrossRefGoogle Scholar
  128. 128.
    Hofmann F, Garcia-Echeverria C. Blocking the insulin-like growth factor-I receptor as a strategy for targeting cancer. Drug Discov Today. 2005;10(15):1041–7.PubMedCrossRefGoogle Scholar
  129. 129.
    Singh P, Alex JM, Bast F. Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-IR) signaling systems: novel treatment strategies for cancer. Med Oncol. 2014;31(1):805.Google Scholar
  130. 130.
    López-Calderero I, Sánchez Chávez E, García-Carbonero R. The insulin-like growth factor pathway as a target for cancer therapy. Clin Transl Oncol. 2010;12(5):326–38.PubMedCrossRefGoogle Scholar
  131. 131.
    Goetsch L, Gonzalez A, Leger O, Beck A, Pauwels PJ, Haeuw JF, Corvaia N. A recombinant humanized anti-insulin-like growth factor receptor type I antibody (h7C10) enhances the antitumor activity of vinorelbine and anti-epidermal growth factor receptor therapy against human cancer xenografts. Int J Cancer. 2005;113(2):316–28.PubMedCrossRefGoogle Scholar
  132. 132.
    Maloney EK, McLaughlin JL, Dagdigian NE, Garrett LM, Connors KM, Zhou XM, Blättler WA, Chittenden T, Singh R. An anti-insulin-like growth factor I receptor antibody that is a potent inhibitor of cancer cell proliferation. Cancer Res. 2003;63(16):5073–83.PubMedGoogle Scholar
  133. 133.
    Moschos SJ, Mantzoros CS. The role of the IGF system in cancer: from basic to clinical studies and clinical applications. Oncology. 2002;63(4):317–32. ReviewPubMedCrossRefGoogle Scholar
  134. 134.
    Khandwala HM, McCutcheon IE, Flyvbjerg A, Friend KE. The effects of insulin-like growth factors on tumorigenesis and neoplastic growth. Endocr Rev. 2000;21(3):215–44.PubMedCrossRefGoogle Scholar
  135. 135.
    García-Echeverría C, Pearson MA, Marti A, Meyer T, Mestan J, Zimmermann J, Gao J, Brueggen J, Capraro HG, Cozens R, Evans DB, Fabbro D, Furet P, Porta DG, Liebetanz J, Martiny-Baron G, Ruetz S, Hofmann F. In vivo antitumor activity of NVP-AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell. 2004;5(3):231–9.PubMedCrossRefGoogle Scholar
  136. 136.
    Chaves J, Saif MW. IGF system in cancer: from bench to clinic. Anti-Cancer Drugs. 2011;22(3):206–12.PubMedCrossRefGoogle Scholar
  137. 137.
    Warshamana-Greene GS, Litz J, Buchdunger E, García-Echeverría C, Hofmann F, Krystal GW. The insulin-like growth factor-I receptor kinase inhibitor, NVP-ADW742, sensitizes small cell lung cancer cell lines to the effects of chemotherapy. Clin Cancer Res. 2005;11(4):1563–71.PubMedCrossRefGoogle Scholar
  138. 138.
    Xue M, Cao X, Zhong Y, Kuang D, Liu X, Zhao Z, Li H. Insulin-like growth factor-1 receptor (IGF-IR) kinase inhibitors in cancer therapy: advances and perspectives. Curr Pharm Des. 2012;18(20):2901–13.Google Scholar
  139. 139.
    Beato M, Truss M, Chávez S. Control of transcription by steroid hormones. Ann N Y Acad Sci. 1996;784:93–123.PubMedCrossRefGoogle Scholar
  140. 140.
    Chakravarti A, Loeffler JS, Dyson NJ. Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res. 2002;62(1):200–7.PubMedGoogle Scholar
  141. 141.
    Liu M, Bohlen P, Witte L, Zhu Z. Simultaneous blockade of both the epidermal growth factor receptor and the insulin-like growth factor receptor signaling pathways in cancer cells with a fully human recombinant bispecific antibody. J Biol Chem. 2004;279(4):2856–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Heather Johnson
    • 1
    • 2
  • Lingwu Chen
    • 3
  • Kefeng Xiao
    • 4
  • Jenny L. Persson
    • 5
    • 6
  1. 1.Olympia Diagnostics, Inc.SunnyvaleUSA
  2. 2.Institute of Basic Medical SciencesBeijingChina
  3. 3.Department of UrologyFirst Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
  4. 4.Department of UrologyThe Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen Urology Minimally Invasive Engineering CenterShenzhenChina
  5. 5.Department of Translational Medicine, Clinical Research CentreLund UniversityMalmöSweden
  6. 6.Department of Molecular BiologyUmeå UniversityUmeåSweden

Personalised recommendations