The Cell Cycle and Androgen Signaling Interactions in Prostate Cancer

Part of the Molecular Pathology Library book series (MPLB)


The essential role of androgen signaling in hormone-dependent and refractory prostate cancer is well established. Indeed, prostate cancer cells have long been known to co-opt androgen signaling to drive uncontrolled cellular replication and proliferation. To do this, androgen signaling must overcome stringent cell cycle checkpoints which normally ensure accurate DNA replication during the S (synthesis)-phase and chromosomal segregation during the M (mitosis)-phase. In non-malignant cells, the cell cycle is tightly regulated as the levels and composition of cyclin and cyclin-dependent kinase (CDK) complexes orchestrate the ordered transition from G1 (gap 1) phase to mitotic cell division. There is now compelling evidence that androgen signaling influences cell cycle progression by regulating the levels and functions of D-type cyclins and CDKs and also that components of the cell cycle apparatus influence androgen receptor (AR) function. Indeed, specific cell cycle regulators, including cyclin A1, Cyclin D1, cyclin E1, CDK7, and CDK9, are believed to be components of the dynamic AR-coregulator complex in prostate cancer cells. Therefore, establishing the mechanistic links between androgen signaling and cell cycle regulation and how these differ between nonmalignant and hormone-dependent versus hormone refractory prostate cancer cells is an area of active research. In this chapter, we will review current understanding of how androgen signaling influences the cell cycle in prostate cancer.


Coactivator Coregulator Corepressor Cyclin Cyclin-dependent kinase (CDK) 


  1. 1.
    Huggins C, Hodges CV. Studies on prostatic cancer—I: the effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1941;1(4):293–7.Google Scholar
  2. 2.
    Agus DB, Cordon-Cardo C, Fox W, Drobnjak M, Koff A, Golde DW, et al. Prostate cancer cell cycle regulators: response to androgen withdrawal and development of androgen independence. J Natl Cancer Inst. 1999;91(21):1869–76.PubMedCrossRefGoogle Scholar
  3. 3.
    Knudsen KE, Arden KC, Cavenee WK. Multiple G1 regulatory elements control the androgen-dependent proliferation of prostatic carcinoma cells. J Biol Chem. 1998;273(32):20213–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Bregman DB, Pestell RG, Kidd VJ. Cell cycle regulation and RNA polymerase II. Front Biosci. 2000;5:D244–57.PubMedCrossRefGoogle Scholar
  5. 5.
    Sherr CJ. Cancer cell cycles. Science. 1996;274(5293):1672–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13(12):1501–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Cobrinik D. Pocket proteins and cell cycle control. Oncogene. 2005;24(17):2796–809.PubMedCrossRefGoogle Scholar
  8. 8.
    Helin K, Harlow E, Fattaey A. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol Cell Biol. 1993;13(10):6501–8.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Lu S, Jenster G, Epner DE. Androgen induction of cyclin-dependent kinase inhibitor p21 gene: role of androgen receptor and transcription factor Sp1 complex. Mol Endocrinol. 2000;14(5):753–60.PubMedCrossRefGoogle Scholar
  10. 10.
    Lu S, Liu M, Epner DE, Tsai SY, Tsai MJ. Androgen regulation of the cyclin-dependent kinase inhibitor p21 gene through an androgen response element in the proximal promoter. Mol Endocrinol. 1999;13(3):376–84.PubMedCrossRefGoogle Scholar
  11. 11.
    Hu B, Gilkes DM, Farooqi B, Sebti SM, Chen J. MDMX overexpression prevents p53 activation by the MDM2 inhibitor Nutlin. J Biol Chem. 2006;281(44):33030–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Konishi N, Nakamura M, Kishi M, Nishimine M, Ishida E, Shimada K. Heterogeneous methylation and deletion patterns of the INK4a/ARF locus within prostate carcinomas. Am J Pathol. 2002;160(4):1207–14.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell. 1998;92(6):725–34.PubMedCrossRefGoogle Scholar
  14. 14.
    Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–66.PubMedCrossRefGoogle Scholar
  15. 15.
    Diehl JA. Cycling to cancer with cyclin D1. Cancer Biol Ther. 2002;1(3):226–31.PubMedCrossRefGoogle Scholar
  16. 16.
    Comstock CE, Augello MA, Goodwin JF, de Leeuw R, Schiewer MJ, Ostrander WF Jr, et al. Targeting cell cycle and hormone receptor pathways in cancer. Oncogene. 2013;32(48):5481–91.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Collins I, Garrett MD. Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Curr Opin Pharmacol. 2005;5(4):366–73.PubMedCrossRefGoogle Scholar
  18. 18.
    Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov. 2015;14(2):130–46.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    LaPak KM, Burd CE. The molecular balancing act of p16(INK4a) in cancer and aging. Mol Cancer Res. 2014;12(2):167–83.PubMedCrossRefGoogle Scholar
  20. 20.
    Burkhart DL, Sage J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer. 2008;8(9):671–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Knudsen ES, Knudsen KE. Tailoring to RB: tumour suppressor status and therapeutic response. Nat Rev Cancer. 2008;8(9):714–24.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Witkiewicz AK, Knudsen KE, Dicker AP, Knudsen ES. The meaning of p16(ink4a) expression in tumors: functional significance, clinical associations and future developments. Cell Cycle. 2011;10(15):2497–503.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science. 1994;264(5157):436–40.PubMedCrossRefGoogle Scholar
  24. 24.
    Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature. 1994;368(6473):753–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu H, Dibling B, Spike B, Dirlam A, Macleod K. New roles for the RB tumor suppressor protein. Curr Opin Genet Dev. 2004;14(1):55–64.PubMedCrossRefGoogle Scholar
  26. 26.
    Park S, Lee J, Do IG, Jang J, Rho K, Ahn S, et al. Aberrant CDK4 amplification in refractory rhabdomyosarcoma as identified by genomic profiling. Sci Rep. 2014;4:3623.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Khatib ZA, Matsushime H, Valentine M, Shapiro DN, Sherr CJ, Look AT. Coamplification of the CDK4 gene with MDM2 and GLI in human sarcomas. Cancer Res. 1993;53(22):5535–41.PubMedGoogle Scholar
  28. 28.
    Fu M, Wang C, Li Z, Sakamaki T, Pestell RG. Minireview: Cyclin D1: normal and abnormal functions. Endocrinology. 2004;145(12):5439–47.PubMedCrossRefGoogle Scholar
  29. 29.
    Jiang W, Kahn SM, Tomita N, Zhang YJ, Lu SH, Weinstein IB. Amplification and expression of the human cyclin D gene in esophageal cancer. Cancer Res. 1992;52(10):2980–3.PubMedGoogle Scholar
  30. 30.
    Etemadmoghadam D, Weir BA, Au-Yeung G, Alsop K, Mitchell G, George J, et al. Synthetic lethality between CCNE1 amplification and loss of BRCA1. Proc Natl Acad Sci U S A. 2013;110(48):19489–94.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Karst AM, Jones PM, Vena N, Ligon AH, Liu JF, Hirsch MS, et al. Cyclin E1 deregulation occurs early in secretory cell transformation to promote formation of fallopian tube-derived high-grade serous ovarian cancers. Cancer Res. 2014;74(4):1141–52.PubMedCrossRefGoogle Scholar
  32. 32.
    Caldon CE, Sergio CM, Kang J, Muthukaruppan A, Boersma MN, Stone A, et al. Cyclin E2 overexpression is associated with endocrine resistance but not insensitivity to CDK2 inhibition in human breast cancer cells. Mol Cancer Ther. 2012;11(7):1488–99.PubMedCrossRefGoogle Scholar
  33. 33.
    Scaltriti M, Eichhorn PJ, Cortes J, Prudkin L, Aura C, Jimenez J, et al. Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients. Proc Natl Acad Sci U S A. 2011;108(9):3761–6.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Mazumder S, Plesca D, Almasan A. A jekyll and hyde role of cyclin E in the genotoxic stress response: switching from cell cycle control to apoptosis regulation. Cell Cycle. 2007;6(12):1437–42.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Chu IM, Hengst L, Slingerland JM. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer. 2008;8(4):253–67.PubMedCrossRefGoogle Scholar
  36. 36.
    Aaltonen K, Amini RM, Heikkila P, Aittomaki K, Tamminen A, Nevanlinna H, et al. High cyclin B1 expression is associated with poor survival in breast cancer. Br J Cancer. 2009;100(7):1055–60.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Nimeus-Malmstrom E, Koliadi A, Ahlin C, Holmqvist M, Holmberg L, Amini RM, et al. Cyclin B1 is a prognostic proliferation marker with a high reproducibility in a population-based lymph node negative breast cancer cohort. Int J Cancer. 2010;127(4):961–7.PubMedGoogle Scholar
  38. 38.
    McKeon F, Melino G. Fog of war: the emerging p53 family. Cell Cycle. 2007;6(3):229–32.PubMedCrossRefGoogle Scholar
  39. 39.
    Bookstein R, MacGrogan D, Hilsenbeck SG, Sharkey F, Allred DC. p53 is mutated in a subset of advanced-stage prostate cancers. Cancer Res. 1993;53(14):3369–73.PubMedGoogle Scholar
  40. 40.
    Gaddipati JP, McLeod DG, Sesterhenn IA, Hussussian CJ, Tong YA, Seth P, et al. Mutations of the p16 gene product are rare in prostate cancer. Prostate. 1997;30(3):188–94.PubMedCrossRefGoogle Scholar
  41. 41.
    Halvorsen OJ, Haukaas S, Hoisaeter PA, Akslen LA. Expression of p 16 protein in prostatic adenocarcinomas, intraepithelial neoplasia, and benign/hyperplastic glands. Urol Oncol. 1997;3(2):59–66.PubMedCrossRefGoogle Scholar
  42. 42.
    Lee CT, Capodieci P, Osman I, Fazzari M, Ferrara J, Scher HI, et al. Overexpression of the cyclin-dependent kinase inhibitor p16 is associated with tumor recurrence in human prostate cancer. Clin Cancer Res. 1999;5(5):977–83.PubMedGoogle Scholar
  43. 43.
    Jarrard DF, Modder J, Fadden P, Fu V, Sebree L, Heisey D, et al. Alterations in the p16/pRb cell cycle checkpoint occur commonly in primary and metastatic human prostate cancer. Cancer Lett. 2002;185(2):191–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Zhang Z, Rosen DG, Yao JL, Huang J, Liu J. Expression of p14ARF, p15INK4b, p16INK4a, and DCR2 increases during prostate cancer progression. Mod Pathol. 2006;19(10):1339–43.PubMedCrossRefGoogle Scholar
  45. 45.
    Chakravarti A, DeSilvio M, Zhang M, Grignon D, Rosenthal S, Asbell SO, et al. Prognostic value of p16 in locally advanced prostate cancer: a study based on Radiation Therapy Oncology Group Protocol 9202. J Clin Oncol. 2007;25(21):3082–9.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Vlachostergios PJ, Karasavvidou F, Kakkas G, Kapatou K, Gioulbasanis I, Daliani DD, et al. Lack of prognostic significance of p16 and p27 after radical prostatectomy in hormone-naive prostate cancer. J Negat Results Biomed. 2012;11(1):2.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Remo A, Pancione M, Zanella C, Manfrin E. p16 expression in prostate cancer and nonmalignant lesions: novel findings and review of the literature. Appl Immunohistochem Mol Morphol. 2016;24:201.PubMedCrossRefGoogle Scholar
  48. 48.
    Phillips SM, Barton CM, Lee SJ, Morton DG, Wallace DM, Lemoine NR, et al. Loss of the retinoblastoma susceptibility gene (RB1) is a frequent and early event in prostatic tumorigenesis. Br J Cancer. 1994;70(6):1252–7.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Brooks JD, Bova GS, Isaacs WB. Allelic loss of the retinoblastoma gene in primary human prostatic adenocarcinomas. Prostate. 1995;26(1):35–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Ittmann MM, Wieczorek R. Alterations of the retinoblastoma gene in clinically localized, stage B prostate adenocarcinomas. Hum Pathol. 1996;27(1):28–34.PubMedCrossRefGoogle Scholar
  51. 51.
    Tricoli JV, Gumerlock PH, Yao JL, Chi SG, D’Souza SA, Nestok BR, et al. Alterations of the retinoblastoma gene in human prostate adenocarcinoma. Genes Chromosomes Cancer. 1996;15(2):108–14.PubMedCrossRefGoogle Scholar
  52. 52.
    Mack PC, Chi SG, Meyers FJ, Stewart SL. deVere White RW, Gumerlock PH. Increased RB1 abnormalities in human primary prostate cancer following combined androgen blockade. Prostate. 1998;34(2):145–51.PubMedCrossRefGoogle Scholar
  53. 53.
    Kaltz-Wittmer C, Klenk U, Glaessgen A, Aust DE, Diebold J, Lohrs U, et al. FISH analysis of gene aberrations (MYC, CCND1, ERBB2, RB, and AR) in advanced prostatic carcinomas before and after androgen deprivation therapy. Lab Invest. 2000;80(9):1455–64.PubMedCrossRefGoogle Scholar
  54. 54.
    Sharma A, Yeow WS, Ertel A, Coleman I, Clegg N, Thangavel C, et al. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J Clin Invest. 2010;120(12):4478–92.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11–22.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kallakury BV, Sheehan CE, Ambros RA, Fisher HA, Kaufman RP Jr, Ross JS. The prognostic significance of p34cdc2 and cyclin D1 protein expression in prostate adenocarcinoma. Cancer. 1997;80(4):753–63.PubMedCrossRefGoogle Scholar
  57. 57.
    Shiraishi T, Watanabe M, Muneyuki T, Nakayama T, Morita J, Ito H, et al. A clinicopathological study of p53, p21 (WAF1/CIP1) and cyclin D1 expression in human prostate cancers. Urol Int. 1998;61(2):90–4.PubMedCrossRefGoogle Scholar
  58. 58.
    Dunsmuir WD, Gillett CE, Meyer LC, Young MP, Corbishley C, Eeles RA, et al. Molecular markers for predicting prostate cancer stage and survival. BJU Int. 2000;86(7):869–78.PubMedCrossRefGoogle Scholar
  59. 59.
    Comstock CE, Revelo MP, Buncher CR, Knudsen KE. Impact of differential cyclin D1 expression and localisation in prostate cancer. Br J Cancer. 2007;96(6):970–9.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Fleischmann A, Rocha C, Saxer-Sekulic N, Zlobec I, Sauter G, Thalmann GN. High-level cytoplasmic cyclin D1 expression in lymph node metastases from prostate cancer independently predicts early biochemical failure and death in surgically treated patients. Histopathology. 2011;58(5):781–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Pereira RA, Ravinal RC, Costa RS, Lima MS, Tucci S, Muglia VF, et al. Cyclin D1 expression in prostate carcinoma. Braz J Med Biol Res. 2014;47(6):515–21.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Gupta V, Garg M, Chaudhry M, Singh S, Sen R, Gill M, et al. Role of cyclin D1 immunoreactivity and AgNOR staining in the evaluation of benign and malignant lesions of the prostate. Prostate Int. 2014;2(2):90–6.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Guo Y, Sklar GN, Borkowski A, Kyprianou N. Loss of the cyclin-dependent kinase inhibitor p27(Kip1) protein in human prostate cancer correlates with tumor grade. Clin Cancer Res. 1997;3(12 Pt 1):2269–74.PubMedGoogle Scholar
  64. 64.
    Cheville JC, Lloyd RV, Sebo TJ, Cheng L, Erickson L, Bostwick DG, et al. Expression of p27kip1 in prostatic adenocarcinoma. Mod Pathol. 1998;11(4):324–8.PubMedGoogle Scholar
  65. 65.
    Cordon-Cardo C, Koff A, Drobnjak M, Capodieci P, Osman I, Millard SS, et al. Distinct altered patterns of p27KIP1 gene expression in benign prostatic hyperplasia and prostatic carcinoma. J Natl Cancer Inst. 1998;90(17):1284–91.PubMedCrossRefGoogle Scholar
  66. 66.
    Cote RJ, Shi Y, Groshen S, Feng AC, Cordon-Cardo C, Skinner D, et al. Association of p27Kip1 levels with recurrence and survival in patients with stage C prostate carcinoma. J Natl Cancer Inst. 1998;90(12):916–20.PubMedCrossRefGoogle Scholar
  67. 67.
    Tsihlias J, Kapusta L, Slingerland J. The prognostic significance of altered cyclin-dependent kinase inhibitors in human cancer. Annu Rev Med. 1999;50:401–23.PubMedCrossRefGoogle Scholar
  68. 68.
    Yang RM, Naitoh J, Murphy M, Wang HJ, Phillipson J. deKernion JB, et al. Low p27 expression predicts poor disease-free survival in patients with prostate cancer. J Urol. 1998;159(3):941–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Erdamar S, Yang G, Harper JW, Lu X, Kattan MW, Thompson TC, et al. Levels of expression of p27KIP1 protein in human prostate and prostate cancer: an immunohistochemical analysis. Mod Pathol. 1999;12(8):751–5.PubMedGoogle Scholar
  70. 70.
    Kuczyk M, Machtens S. Predictive value of decreased p27 Kip1 protein expression for the recurrence-free and long-term survival of prostate cancer patients. Prostate Cancer Prostatic Dis. 1999;2(S3):S17.PubMedCrossRefGoogle Scholar
  71. 71.
    Vis AN, Noordzij MA, Fitoz K, Wildhagen MF, Schroder FH, van der Kwast TH. Prognostic value of cell cycle proteins p27(kip1) and MIB-1, and the cell adhesion protein CD44s in surgically treated patients with prostate cancer. J Urol. 2000;164(6):2156–61.PubMedCrossRefGoogle Scholar
  72. 72.
    Kuczyk MA, Bokemeyer C, Hartmann J, Schubach J, Walter C, Machtens S, et al. Predictive value of altered p27Kip1 and p21WAF/Cip1 protein expression for the clinical prognosis of patients with localized prostate cancer. Oncol Rep. 2001;8(6):1401–7.PubMedGoogle Scholar
  73. 73.
    Sirma H, Broemel M, Stumm L, Tsourlakis T, Steurer S, Tennstedt P, et al. Loss of CDKN1B/p27Kip1 expression is associated with ERG fusion-negative prostate cancer, but is unrelated to patient prognosis. Oncol Lett. 2013;6(5):1245–52.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Visakorpi T, Kallioniemi OP, Heikkinen A, Koivula T, Isola J. Small subgroup of aggressive, highly proliferative prostatic carcinomas defined by p53 accumulation. J Natl Cancer Inst. 1992;84(11):883–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Navone NM, Troncoso P, Pisters LL, Goodrow TL, Palmer JL, Nichols WW, et al. p53 protein accumulation and gene mutation in the progression of human prostate carcinoma. J Natl Cancer Inst. 1993;85(20):1657–69.PubMedCrossRefGoogle Scholar
  76. 76.
    Vesalainen SL, Lipponen PK, Talja MT, Alhava EM, Syrjanen KJ. Proliferating cell nuclear antigen and p53 expression as prognostic factors in T1–2M0 prostatic adenocarcinoma. Int J Cancer. 1994;58(2):303–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Heidenberg HB, Sesterhenn IA, Gaddipati JP, Weghorst CM, Buzard GS, Moul JW, et al. Alteration of the tumor suppressor gene p53 in a high fraction of hormone refractory prostate cancer. J Urol. 1995;154(2 Pt 1):414–21.PubMedCrossRefGoogle Scholar
  78. 78.
    Hughes JH, Cohen MB, Robinson RA. p53 immunoreactivity in primary and metastatic prostatic adenocarcinoma. Mod Pathol. 1995;8(5):462–6.PubMedGoogle Scholar
  79. 79.
    Shurbaji MS, Kalbfleisch JH, Thurmond TS. Immunohistochemical detection of p53 protein as a prognostic indicator in prostate cancer. Hum Pathol. 1995;26(1):106–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Grignon DJ, Caplan R, Sarkar FH, Lawton CA, Hammond EH, Pilepich MV, et al. p53 status and prognosis of locally advanced prostatic adenocarcinoma: a study based on RTOG 8610. J Natl Cancer Inst. 1997;89(2):158–65.PubMedCrossRefGoogle Scholar
  81. 81.
    Qian J, Hirasawa K, Bostwick DG, Bergstralh EJ, Slezak JM, Anderl KL, et al. Loss of p53 and c-myc overrepresentation in stage T(2–3)N(1–3)M(0) prostate cancer are potential markers for cancer progression. Mod Pathol. 2002;15(1):35–44.PubMedCrossRefGoogle Scholar
  82. 82.
    Nguyen TT, Nguyen CT, Gonzales FA, Nichols PW, Yu MC, Jones PA. Analysis of cyclin-dependent kinase inhibitor expression and methylation patterns in human prostate cancers. Prostate. 2000;43(3):233–42.PubMedCrossRefGoogle Scholar
  83. 83.
    Konishi N, Nakamura M, Kishi M, Nishimine M, Ishida E, Shimada K. DNA hypermethylation status of multiple genes in prostate adenocarcinomas. Jpn J Cancer Res. 2002;93(7):767–73.PubMedCrossRefGoogle Scholar
  84. 84.
    Lee JT, Lehmann BD, Terrian DM, Chappell WH, Stivala F, Libra M, et al. Targeting prostate cancer based on signal transduction and cell cycle pathways. Cell Cycle. 2008;7(12):1745–62.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Ameri A, Alidoosti A, Hosseini SY, Parvin M, Emranpour MH, Taslimi F, et al. Prognostic value of promoter hypermethylation of retinoic acid receptor beta (RARB) and CDKN2 (p16/MTS1) in prostate cancer. Chin J Cancer Res. 2011;23(4):306–11.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Sherr CJ. Divorcing ARF and p53: an unsettled case. Nat Rev Cancer. 2006;6(9):663–73.PubMedCrossRefGoogle Scholar
  87. 87.
    Lu W, Xie Y, Ma Y, Matusik RJ, Chen Z. ARF represses androgen receptor transactivation in prostate cancer. Mol Endocrinol. 2013;27(4):635–48.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Humbey O, Pimkina J, Zilfou JT, Jarnik M, Dominguez-Brauer C, Burgess DJ, et al. The ARF tumor suppressor can promote the progression of some tumors. Cancer Res. 2008;68(23):9608–13.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol. 1979;17(1):16–23.PubMedGoogle Scholar
  90. 90.
    Li C, Larsson C, Futreal A, Lancaster J, Phelan C, Aspenblad U, et al. Identification of two distinct deleted regions on chromosome 13 in prostate cancer. Oncogene. 1998;16(4):481–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Cooney KA, Wetzel JC, Merajver SD, Macoska JA, Singleton TP, Wojno KJ. Distinct regions of allelic loss on 13q in prostate cancer. Cancer Res. 1996;56(5):1142–5.PubMedGoogle Scholar
  92. 92.
    Aparicio A, Den RB, Knudsen KE. Time to stratify? The retinoblastoma protein in castrate-resistant prostate cancer. Nat Rev Urol. 2011;8(10):562–8.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Schiewer MJ, Augello MA, Knudsen KE. The AR dependent cell cycle: mechanisms and cancer relevance. Mol Cell Endocrinol. 2012;352(1–2):34–45.PubMedCrossRefGoogle Scholar
  94. 94.
    Pettaway CA, Pathak S, Greene G, Ramirez E, Wilson MR, Killion JJ, et al. Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res. 1996;2(9):1627–36.PubMedGoogle Scholar
  95. 95.
    Pinthus JH, Waks T, Schindler DG, Harmelin A, Said JW, Belldegrun A, et al. WISH-PC2: a unique xenograft model of human prostatic small cell carcinoma. Cancer Res. 2000;60(23):6563–7.PubMedGoogle Scholar
  96. 96.
    Horoszewicz JS, Leong SS, Chu TM, Wajsman ZL, Friedman M, Papsidero L, et al. The LNCaP cell line—a new model for studies on human prostatic carcinoma. Prog Clin Biol Res. 1980;37:115–32.PubMedGoogle Scholar
  97. 97.
    Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419(6907):624–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Balk SP, Knudsen KE. AR, the cell cycle, and prostate cancer. Nucl Recept Signal. 2008;6:e001.PubMedPubMedCentralGoogle Scholar
  99. 99.
    He Y, Franco OE, Jiang M, Williams K, Love HD, Coleman IM, et al. Tissue-specific consequences of cyclin D1 overexpression in prostate cancer progression. Cancer Res. 2007;67(17):8188–97.PubMedCrossRefGoogle Scholar
  100. 100.
    Petre CE, Wetherill YB, Danielsen M, Knudsen KE. Cyclin D1: mechanism and consequence of androgen receptor co-repressor activity. J Biol Chem. 2002;277(3):2207–15.PubMedCrossRefGoogle Scholar
  101. 101.
    Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, Donaldson SL, et al. GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics. 2010;26(22):2927–8.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D, et al. The BioGRID interaction database: 2015 update. Nucleic Acids Res. 2015;43(Database issue):D470–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Xu Y, Chen SY, Ross KN, Balk SP. Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res. 2006;66(15):7783–92.PubMedCrossRefGoogle Scholar
  104. 104.
    Wander SA, Zhao D, Slingerland JM. p27: a barometer of signaling deregulation and potential predictor of response to targeted therapies. Clin Cancer Res. 2011;17(1):12–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Lu L, Schulz H, Wolf DA. The F-box protein SKP2 mediates androgen control of p27 stability in LNCaP human prostate cancer cells. BMC Cell Biol. 2002;3:22.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Fang Z, Zhang T, Dizeyi N, Chen S, Wang H, Swanson KD, et al. Androgen receptor enhances p27 degradation in prostate cancer cells through rapid and selective TORC2 activation. J Biol Chem. 2012;287(3):2090–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Schlomm T, Iwers L, Kirstein P, Jessen B, Kollermann J, Minner S, et al. Clinical significance of p53 alterations in surgically treated prostate cancers. Mod Pathol. 2008;21(11):1371–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Kluth M, Harasimowicz S, Burkhardt L, Grupp K, Krohn A, Prien K, et al. Clinical significance of different types of p53 gene alteration in surgically treated prostate cancer. Int J Cancer. 2014;135(6):1369–80.PubMedCrossRefGoogle Scholar
  109. 109.
    Brooks JD, Bova GS, Ewing CM, Piantadosi S, Carter BS, Robinson JC, et al. An uncertain role for p53 gene alterations in human prostate cancers. Cancer Res. 1996;56(16):3814–22.PubMedGoogle Scholar
  110. 110.
    Alimirah F, Panchanathan R, Chen J, Zhang X, Ho SM, Choubey D. Expression of androgen receptor is negatively regulated by p53. Neoplasia. 2007;9(12):1152–9.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Vinall RL, Tepper CG, Shi XB, Xue LA, Gandour-Edwards R, de Vere White RW. The R273H p53 mutation can facilitate the androgen-independent growth of LNCaP by a mechanism that involves H2 relaxin and its cognate receptor LGR7. Oncogene. 2006;25(14):2082–93.PubMedCrossRefGoogle Scholar
  112. 112.
    D’Amico AV, Halabi S, Vollmer R, Loffredo M, McMahon E, Sanford B, et al. p53 protein expression status and recurrence in men treated with radiation and androgen suppression therapy for higher-risk prostate cancer: a prospective phase II Cancer and Leukemia Group B Study (CALGB 9682). Urology. 2008;71(5):933–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Lehmann BD, McCubrey JA, Jefferson HS, Paine MS, Chappell WH, Terrian DM. A dominant role for p53-dependent cellular senescence in radiosensitization of human prostate cancer cells. Cell Cycle. 2007;6(5):595–605.PubMedCrossRefGoogle Scholar
  114. 114.
    Lehmann S, Bykov VJ, Ali D, Andren O, Cherif H, Tidefelt U, et al. Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol. 2012;30(29):3633–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M, Shields JD, et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 2002;62(14):4123–31.PubMedGoogle Scholar
  116. 116.
    Anai S, Sakamoto N, Sakai Y, Tanaka M, Porvasnik S, Urbanek C, et al. Dual targeting of Bcl-2 and VEGF: a potential strategy to improve therapy for prostate cancer. Urol Oncol. 2011;29(4):421–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Montico F, Kido LA, Hetzl AC, Cagnon VH. Prostatic angiogenic responses in late life: antiangiogenic therapy influences and relation with the glandular microenvironment in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Prostate. 2015;75(5):484–99.PubMedCrossRefGoogle Scholar
  118. 118.
    Cash J, Korchnak A, Gorman J, Tandon Y, Fraizer G. VEGF transcription and mRNA stability are altered by WT1 not DDS(R384W) expression in LNCaP cells. Oncol Rep. 2007;17(6):1413–9.PubMedGoogle Scholar
  119. 119.
    Gingrich JR, Barrios RJ, Morton RA, Boyce BF, DeMayo FJ, Finegold MJ, et al. Metastatic prostate cancer in a transgenic mouse. Cancer Res. 1996;56(18):4096–102.PubMedGoogle Scholar
  120. 120.
    Foster BA, Gingrich JR, Kwon ED, Madias C, Greenberg NM. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res. 1997;57(16):3325–30.PubMedGoogle Scholar
  121. 121.
    Huez I, Creancier L, Audigier S, Gensac MC, Prats AC, Prats H. Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol Cell Biol. 1998;18(11):6178–90.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 2003;4(3):209–21.PubMedCrossRefGoogle Scholar
  123. 123.
    Liu P, Begley M, Michowski W, Inuzuka H, Ginzberg M, Gao D, et al. Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature. 2014;508(7497):541–5.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    de Brot S, Ntekim A, Cardenas R, James V, Allegrucci C, Heery D, et al. Regulation of vascular endothelial growth factor (VEGF) in prostate cancer. Endocr Relat Cancer. 2015;22:R107.PubMedCrossRefGoogle Scholar
  125. 125.
    Fang J, Ding M, Yang L, Liu LZ, Jiang BH. PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis. Cell Signal. 2007;19(12):2487–97.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Li B, Sun A, Youn H, Hong Y, Terranova PF, Thrasher JB, et al. Conditional Akt activation promotes androgen-independent progression of prostate cancer. Carcinogenesis. 2007;28(3):572–83.PubMedCrossRefGoogle Scholar
  127. 127.
    Lee SH, Johnson D, Luong R, Sun Z. Crosstalking between androgen and PI3K/AKT signaling pathways in prostate cancer cells. J Biol Chem. 2015;290(5):2759–68.PubMedCrossRefGoogle Scholar
  128. 128.
    Ha S, Ruoff R, Kahoud N, Franke TF, Logan SK. Androgen receptor levels are upregulated by Akt in prostate cancer. Endocr Relat Cancer. 2011;18(2):245–55.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Guertin DA, Stevens DM, Saitoh M, Kinkel S, Crosby K, Sheen JH, et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell. 2009;15(2):148–59.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med. 2004;10(6):594–601.PubMedCrossRefGoogle Scholar
  131. 131.
    Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H, et al. Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest. 2008;118(9):3051–64.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Floc’h N, Kinkade CW, Kobayashi T, Aytes A, Lefebvre C, Mitrofanova A, et al. Dual targeting of the Akt/mTOR signaling pathway inhibits castration-resistant prostate cancer in a genetically engineered mouse model. Cancer Res. 2012;72(17):4483–93.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Edlind MP, Hsieh AC. PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance. Asian J Androl. 2014;16(3):378–86.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Bitting RL, Armstrong AJ. Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer. Endocr Relat Cancer. 2013;20(3):R83–99.PubMedCrossRefGoogle Scholar
  135. 135.
    Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.PubMedCrossRefGoogle Scholar
  136. 136.
    Petre-Draviam CE, Cook SL, Burd CJ, Marshall TW, Wetherill YB, Knudsen KE. Specificity of cyclin D1 for androgen receptor regulation. Cancer Res. 2003;63(16):4903–13.PubMedGoogle Scholar
  137. 137.
    Knudsen KE, Cavenee WK, Arden KC. D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability. Cancer Res. 1999;59(10):2297–301.PubMedGoogle Scholar
  138. 138.
    Reutens AT, Fu M, Wang C, Albanese C, McPhaul MJ, Sun Z, et al. Cyclin D1 binds the androgen receptor and regulates hormone-dependent signaling in a p300/CBP-associated factor (P/CAF)-dependent manner. Mol Endocrinol. 2001;15(5):797–811.PubMedCrossRefGoogle Scholar
  139. 139.
    Burd CJ, Petre CE, Morey LM, Wang Y, Revelo MP, Haiman CA, et al. Cyclin D1b variant influences prostate cancer growth through aberrant androgen receptor regulation. Proc Natl Acad Sci U S A. 2006;103(7):2190–5.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Comstock CE, Augello MA, Schiewer MJ, Karch J, Burd CJ, Ertel A, et al. Cyclin D1 is a selective modifier of androgen-dependent signaling and androgen receptor function. J Biol Chem. 2011;286(10):8117–27.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Heery DM, Kalkhoven E, Hoare S, Parker MG. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature. 1997;387(6634):733–6.PubMedCrossRefGoogle Scholar
  142. 142.
    Petre-Draviam CE, Williams EB, Burd CJ, Gladden A, Moghadam H, Meller J, et al. A central domain of cyclin D1 mediates nuclear receptor corepressor activity. Oncogene. 2005;24(3):431–44.PubMedCrossRefGoogle Scholar
  143. 143.
    Betticher DC, Thatcher N, Altermatt HJ, Hoban P, Ryder WD, Heighway J. Alternate splicing produces a novel cyclin D1 transcript. Oncogene. 1995;11(5):1005–11.PubMedGoogle Scholar
  144. 144.
    Koike H, Suzuki K, Satoh T, Ohtake N, Takei T, Nakata S, et al. Cyclin D1 gene polymorphism and familial prostate cancer: the AA genotype of A870G polymorphism is associated with prostate cancer risk in men aged 70 years or older and metastatic stage. Anticancer Res. 2003;23(6D):4947–51.PubMedGoogle Scholar
  145. 145.
    Comstock CE, Augello MA, Benito RP, Karch J, Tran TH, Utama FE, et al. Cyclin D1 splice variants: polymorphism, risk, and isoform-specific regulation in prostate cancer. Clin Cancer Res. 2009;15(17):5338–49.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Linja MJ, Porkka KP, Kang Z, Savinainen KJ, Janne OA, Tammela TL, et al. Expression of androgen receptor coregulators in prostate cancer. Clin Cancer Res. 2004;10(3):1032–40.PubMedCrossRefGoogle Scholar
  147. 147.
    Nakamura Y, Suzuki T, Arai Y, Sasano H. Nuclear receptor DAX1 in human prostate cancer: a novel independent biological modulator. Endocr J. 2009;56(1):39–44.PubMedCrossRefGoogle Scholar
  148. 148.
    Liu D, Matzuk MM, Sung WK, Guo Q, Wang P, Wolgemuth DJ. Cyclin A1 is required for meiosis in the male mouse. Nat Genet. 1998;20(4):377–80.PubMedCrossRefGoogle Scholar
  149. 149.
    Liao C, Wang XY, Wei HQ, Li SQ, Merghoub T, Pandolfi PP, et al. Altered myelopoiesis and the development of acute myeloid leukemia in transgenic mice overexpressing cyclin A1. Proc Natl Acad Sci U S A. 2001;98(12):6853–8.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Ji P, Agrawal S, Diederichs S, Baumer N, Becker A, Cauvet T, et al. Cyclin A1, the alternative A-type cyclin, contributes to G1/S cell cycle progression in somatic cells. Oncogene. 2005;24(16):2739–44.PubMedCrossRefGoogle Scholar
  151. 151.
    Yang R, Nakamaki T, Lubbert M, Said J, Sakashita A, Freyaldenhoven BS, et al. Cyclin A1 expression in leukemia and normal hematopoietic cells. Blood. 1999;93(6):2067–74.PubMedGoogle Scholar
  152. 152.
    Muller C, Yang R, Park DJ, Serve H, Berdel WE, Koeffler HP. The aberrant fusion proteins PML-RAR alpha and PLZF-RAR alpha contribute to the overexpression of cyclin A1 in acute promyelocytic leukemia. Blood. 2000;96(12):3894–9.PubMedGoogle Scholar
  153. 153.
    Wegiel B, Bjartell A, Tuomela J, Dizeyi N, Tinzl M, Helczynski L, et al. Multiple cellular mechanisms related to cyclin A1 in prostate cancer invasion and metastasis. J Natl Cancer Inst. 2008;100(14):1022–36.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Wegiel B, Bjartell A, Culig Z, Persson JL. Interleukin-6 activates PI3K/Akt pathway and regulates cyclin A1 to promote prostate cancer cell survival. Int J Cancer. 2008;122(7):1521–9.PubMedCrossRefGoogle Scholar
  155. 155.
    Wegiel B, Bjartell A, Ekberg J, Gadaleanu V, Brunhoff C, Persson JL. A role for cyclin A1 in mediating the autocrine expression of vascular endothelial growth factor in prostate cancer. Oncogene. 2005;24(42):6385–93.PubMedCrossRefGoogle Scholar
  156. 156.
    Tokumaru Y, Yamashita K, Osada M, Nomoto S, Sun DI, Xiao Y, et al. Inverse correlation between cyclin A1 hypermethylation and p53 mutation in head and neck cancer identified by reversal of epigenetic silencing. Cancer Res. 2004;64(17):5982–7.PubMedCrossRefGoogle Scholar
  157. 157.
    Shaw RJ, Liloglou T, Rogers SN, Brown JS, Vaughan ED, Lowe D, et al. Promoter methylation of P16, RARbeta, E-cadherin, cyclin A1 and cytoglobin in oral cancer: quantitative evaluation using pyrosequencing. Br J Cancer. 2006;94(4):561–8.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Kitkumthorn N, Yanatatsanajit P, Kiatpongsan S, Phokaew C, Triratanachat S, Trivijitsilp P, et al. Cyclin A1 promoter hypermethylation in human papillomavirus-associated cervical cancer. BMC Cancer. 2006;6:55.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Maxwell SA, Davis GE. Differential gene expression in p53-mediated apoptosis-resistant vs. apoptosis-sensitive tumor cell lines. Proc Natl Acad Sci U S A. 2000;97(24):13009–14.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Vaziri C, Saxena S, Jeon Y, Lee C, Murata K, Machida Y, et al. A p53-dependent checkpoint pathway prevents rereplication. Mol Cell. 2003;11(4):997–1008.PubMedCrossRefGoogle Scholar
  161. 161.
    Kashyap V, Ahmad S, Nilsson EM, Helczynski L, Kenna S, Persson JL, et al. The lysine specific demethylase-1 (LSD1/KDM1A) regulates VEGF-A expression in prostate cancer. Mol Oncol. 2013;7(3):555–66.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Katayama H, Murashima T, Saeki Y, Nishizawa Y. The pure anti-androgen bicalutamide inhibits cyclin A expression both in androgen-dependent and -independent cell lines. Int J Oncol. 2010;36(3):553–62.PubMedGoogle Scholar
  163. 163.
    Zou JX, Zhong Z, Shi XB, Tepper CG. deVere White RW, Kung HJ, et al. ACTR/AIB1/SRC-3 and androgen receptor control prostate cancer cell proliferation and tumor growth through direct control of cell cycle genes. Prostate. 2006;66(14):1474–86.PubMedCrossRefGoogle Scholar
  164. 164.
    Zhou XE, Suino-Powell KM, Li J, He Y, Mackeigan JP, Melcher K, et al. Identification of SRC3/AIB1 as a preferred coactivator for hormone-activated androgen receptor. J Biol Chem. 2010;285(12):9161–71.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Geng C, He B, Xu L, Barbieri CE, Eedunuri VK, Chew SA, et al. Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc Natl Acad Sci U S A. 2013;110(17):6997–7002.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Ha S, Iqbal NJ, Mita P, Ruoff R, Gerald WL, Lepor H, et al. Phosphorylation of the androgen receptor by PIM1 in hormone refractory prostate cancer. Oncogene. 2013;32(34):3992–4000.PubMedCrossRefGoogle Scholar
  167. 167.
    Hwang HC, Clurman BE. Cyclin E in normal and neoplastic cell cycles. Oncogene. 2005;24(17):2776–86.PubMedCrossRefGoogle Scholar
  168. 168.
    Geng Y, Lee YM, Welcker M, Swanger J, Zagozdzon A, Winer JD, et al. Kinase-independent function of cyclin E. Mol Cell. 2007;25(1):127–39.PubMedCrossRefGoogle Scholar
  169. 169.
    Yamamoto A, Hashimoto Y, Kohri K, Ogata E, Kato S, Ikeda K, et al. Cyclin E as a coactivator of the androgen receptor. J Cell Biol. 2000;150(4):873–80.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Yu Y, Zhang Y, Guan W, Huang T, Kang J, Sheng X, et al. Androgen receptor promotes the oncogenic function of overexpressed Jagged1 in prostate cancer by enhancing cyclin B1 expression via Akt phosphorylation. Mol Cancer Res. 2014;12(6):830–42.PubMedCrossRefGoogle Scholar
  171. 171.
    Li Y, Zhang DY, Ren Q, Ye F, Zhao X, Daniels G, et al. Regulation of a novel androgen receptor target gene, the cyclin B1 gene, through androgen-dependent E2F family member switching. Mol Cell Biol. 2012;32(13):2454–66.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Willder JM, Heng SJ, McCall P, Adams CE, Tannahill C, Fyffe G, et al. Androgen receptor phosphorylation at serine 515 by Cdk1 predicts biochemical relapse in prostate cancer patients. Br J Cancer. 2013;108(1):139–48.PubMedCrossRefGoogle Scholar
  173. 173.
    Chen S, Xu Y, Yuan X, Bubley GJ, Balk SP. Androgen receptor phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase 1. Proc Natl Acad Sci U S A. 2006;103(43):15969–74.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Lim JT, Mansukhani M, Weinstein IB. Cyclin-dependent kinase 6 associates with the androgen receptor and enhances its transcriptional activity in prostate cancer cells. Proc Natl Acad Sci U S A. 2005;102(14):5156–61.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Lindqvist J, Imanishi SY, Torvaldson E, Malinen M, Remes M, Orn F, et al. Cyclin-dependent kinase 5 acts as a critical determinant of AKT-dependent proliferation and regulates differential gene expression by the androgen receptor in prostate cancer cells. Mol Biol Cell. 2015;26:1971.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Hsu FN, Chen MC, Chiang MC, Lin E, Lee YT, Huang PH, et al. Regulation of androgen receptor and prostate cancer growth by cyclin-dependent kinase 5. J Biol Chem. 2011;286(38):33141–9.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Olshavsky NA, Groh EM, Comstock CE, Morey LM, Wang Y, Revelo MP, et al. Cyclin D3 action in androgen receptor regulation and prostate cancer. Oncogene. 2008;27(22):3111–21.PubMedCrossRefGoogle Scholar
  178. 178.
    Zong H, Chi Y, Wang Y, Yang Y, Zhang L, Chen H, et al. Cyclin D3/CDK11p58 complex is involved in the repression of androgen receptor. Mol Cell Biol. 2007;27(20):7125–42.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011;364(21):1995–2005.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367(13):1187–97.PubMedCrossRefGoogle Scholar
  181. 181.
    Beltran H, Rickman DS, Park K, Chae SS, Sboner A, MacDonald TY, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 2011;1(6):487–95.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009;138(2):245–56.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Health Science, University of NottinghamNottinghamUK
  2. 2.Department of PharmacologyWeill Cornell MedicineNew YorkUSA

Personalised recommendations