Neuroendocrine Prostate Cancer

Chapter
Part of the Molecular Pathology Library book series (MPLB)

Abstract

Neuroendocrine prostate cancer (NEPC) is an androgen receptor (AR)-negative variant that most commonly arises from treated adenocarcinoma of the prostate. NEPC does not respond to AR-directed therapy and has only transient response to chemotherapy. It is estimated that up to 30% of late-stage prostate cancers harbor a predominance of neuroendocrine differentiation. However, due to a general lack of biopsy diagnoses for advanced disease, this may underrepresent the frequency of NEPC. The prognosis is poor due to late recognition, heterogeneous clinical features, and lack of effective therapy. Chemotherapy used for other small cell neuroendocrine cancers is the mainstay of treatment; however, more targeted approaches are being developed based on an emerging understanding of this aggressive form of prostate cancer. This chapter provides an in-depth overview of most recent genomic alterations of this lethal subtype of the disease.

Keywords

Abiraterone Androgen receptor Aurora kinase A Castrate resistant Enzalutamide N-myc 

Abbreviations

AR

Androgen receptor

CRPC

Castration-resistant prostate cancer

NEPC

Neuroendocrine prostate cancer

References

  1. 1.
    Marcus DM, Goodman M, Jani AB, Osunkoya AO, Rossi PJ. A comprehensive review of incidence and survival in patients with rare histological variants of prostate cancer in the United States from 1973 to 2008. Prostate Cancer Prostatic Dis. 2012;15:283–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Li Q, Zhang CS, Zhang Y. Molecular aspects of prostate cancer with neuroendocrine differentiation. Chin J Cancer Res. 2016;28:122–9.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Alanee S, Moore A, Nutt M, Holland B, Dynda D, El-Zawahry A, McVary KT. Contemporary incidence and mortality rates of neuroendocrine prostate cancer. Anticancer Res. 2015;35:4145–50.PubMedGoogle Scholar
  4. 4.
    Bostwick DG, Cheng L: Urologic surgical pathology. 3rd edition. Saunders: London. pp. 1 online resource (ix, 966 pages):1 online resource (ix, 966 pages).Google Scholar
  5. 5.
    Aumuller G, Doll A, Wennemuth G, Dizeyi N, Abrahamsson PA, Wilhelm B. Regional distribution of neuroendocrine cells in the urogenital duct system of the male rat. Prostate. 2012;72:326–37.PubMedCrossRefGoogle Scholar
  6. 6.
    Alberti C. Neuroendocrine differentiation in prostate carcinoma: focusing on its pathophysiologic mechanisms and pathological features. G Chir. 2010;31:568–74.PubMedGoogle Scholar
  7. 7.
    di Sant’Agnese PA. Neuroendocrine cells of the prostate and neuroendocrine differentiation in prostatic carcinoma: a review of morphologic aspects. Urology. 1998;51:121–4.PubMedCrossRefGoogle Scholar
  8. 8.
    di Sant’Agnese PA. Neuroendocrine differentiation in carcinoma of the prostate. Diagnostic, prognostic, and therapeutic implications. Cancer. 1992;70:254–68.PubMedCrossRefGoogle Scholar
  9. 9.
    di Sant’Agnese PA, de Mesy Jensen KL, Ackroyd RK. Calcitonin, katacalcin, and calcitonin gene-related peptide in the human prostate. An immunocytochemical and immunoelectron microscopic study. Arch Pathol Lab Med. 1989;113:790–6.PubMedGoogle Scholar
  10. 10.
    Sunday ME, Kaplan LM, Motoyama E, Chin WW, Spindel ER. Gastrin-releasing peptide (mammalian bombesin) gene expression in health and disease. Lab Investig. 1988;59:5–24.PubMedGoogle Scholar
  11. 11.
    Mucci NR, Akdas G, Manely S, Rubin MA. Neuroendocrine expression in metastatic prostate cancer: evaluation of high throughput tissue microarrays to detect heterogeneous protein expression. Hum Pathol. 2000;31:406–14.PubMedCrossRefGoogle Scholar
  12. 12.
    International Agency for Research on Cancer (IARC), Moch H. WHO classification of tumours of the urinary system and male genital organs. 4th ed. Geneva: WHO.Google Scholar
  13. 13.
    Surcel CI, van Oort IM, Sooriakumaran P, Briganti A, De Visschere PJ, Futterer JJ, Ghadjar P, Isbarn H, Ost P, van den Bergh RC, et al. Prognostic effect of neuroendocrine differentiation in prostate cancer: a critical review. Urol Oncol. 2015;265:e261–7.Google Scholar
  14. 14.
    Epstein JI, Amin MB, Beltran H, Lotan TL, Mosquera JM, Reuter VE, Robinson BD, Troncoso P, Rubin MA. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol. 2014;38:756–67.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Nakada SY, di Sant’Agnese PA, Moynes RA, Hiipakka RA, Liao S, Cockett AT, Abrahamsson PA. The androgen receptor status of neuroendocrine cells in human benign and malignant prostatic tissue. Cancer Res. 1993;53:1967–70.PubMedGoogle Scholar
  16. 16.
    Sauer CG, Roemer A, Grobholz R. Genetic analysis of neuroendocrine tumor cells in prostatic carcinoma. Prostate. 2006;66:227–34.PubMedCrossRefGoogle Scholar
  17. 17.
    Yuan TC, Veeramani S, Lin MF. Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocr Relat Cancer. 2007;14:531–47.PubMedCrossRefGoogle Scholar
  18. 18.
    Beltran H, Rickman DS, Park K, Chae SS, Sboner A, MacDonald TY, Wang Y, Sheikh KL, Terry S, Tagawa ST, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 2011;1:487–95.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Humphrey PA. Histological variants of prostatic carcinoma and their significance. Histopathology. 2012;60:59–74.PubMedCrossRefGoogle Scholar
  20. 20.
    Okoye E, Choi EK, Divatia M, Miles BJ, Ayala AG, Ro JY. De novo large cell neuroendocrine carcinoma of the prostate gland with pelvic lymph node metastasis: a case report with review of literature. Int J Clin Exp Pathol. 2014;7:9061–6.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Acosta-Gonzalez G, Qin J, Wieczorek R, Melamed J, Deng FM, Zhou M, Makarov D, Ye F, Pei Z, Pincus MR, Lee P. De novo large cell neuroendocrine carcinoma of the prostate, case report and literature review. Am J Clin Exp Urol. 2014;2:337–42.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Hirano D, Okada Y, Minei S, Takimoto Y, Nemoto N. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur Urol. 2004;45:586–92. discussion 592PubMedCrossRefGoogle Scholar
  23. 23.
    Berruti A, Mosca A, Porpiglia F, Bollito E, Tucci M, Vana F, Cracco C, Torta M, Russo L, Cappia S, et al. Chromogranin A expression in patients with hormone naive prostate cancer predicts the development of hormone refractory disease. J Urol. 2007;178:838–43. quiz 1129PubMedCrossRefGoogle Scholar
  24. 24.
    di Sant’Agnese PA. Neuroendocrine differentiation in prostatic carcinoma: an update on recent developments. Ann Oncol. 2001;12(Suppl 2):S135–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Abrahamsson PA. Neuroendocrine differentiation in prostatic carcinoma. Prostate. 1999;39:135–48.PubMedCrossRefGoogle Scholar
  26. 26.
    Lin D, Wyatt AW, Xue H, Wang Y, Dong X, Haegert A, Wu R, Brahmbhatt S, Mo F, Jong L, et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 2014;74:1272–83.PubMedCrossRefGoogle Scholar
  27. 27.
    Aparicio A, Tzelepi V. Neuroendocrine (small-cell) carcinomas: why they teach us essential lessons about prostate cancer. Oncology (Williston Park). 2014;28:831–8.Google Scholar
  28. 28.
    Wang HT, Yao YH, Li BG, Tang Y, Chang JW, Zhang J. Neuroendocrine Prostate Cancer (NEPC) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis-a systematic review and pooled analysis. J Clin Oncol. 2014;32:3383–90.PubMedCrossRefGoogle Scholar
  29. 29.
    Terry S, Maille P, Baaddi H, Kheuang L, Soyeux P, Nicolaiew N, Ceraline J, Firlej V, Beltran H, Allory Y, et al. Cross modulation between the androgen receptor axis and protocadherin-PC in mediating neuroendocrine transdifferentiation and therapeutic resistance of prostate cancer. Neoplasia. 2013;15:761–72.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Nouri M, Ratther E, Stylianou N, Nelson CC, Hollier BG, Williams ED. Androgen-targeted therapy-induced epithelial mesenchymal plasticity and neuroendocrine transdifferentiation in prostate cancer: an opportunity for intervention. Front Oncol. 2014;4:370.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Farach A, Ding Y, Lee M, Creighton C, Delk NA, Ittmann M, Miles B, Rowley D, Farach-Carson MC, Ayala GE. Neuronal trans-differentiation in prostate cancer cells. Prostate. 2016;76:1312–25.PubMedCrossRefGoogle Scholar
  32. 32.
    Aparicio A, Logothetis CJ, Maity SN. Understanding the lethal variant of prostate cancer: power of examining extremes. Cancer Discov. 2011;1:466–8.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Beltran H, Tagawa ST, Park K, MacDonald T, Milowsky MI, Mosquera JM, Rubin MA, Nanus DM. Challenges in recognizing treatment-related neuroendocrine prostate cancer. J Clin Oncol. 2012;30:e386–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Parimi V, Goyal R, Poropatich K, Yang XJ. Neuroendocrine differentiation of prostate cancer: a review. Am J Clin Exp Urol. 2014;2:273–85.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Sun Y, Niu J, Huang J. Neuroendocrine differentiation in prostate cancer. Am J Transl Res. 2009;1:148–62.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Puccetti L, Supuran CT, Fasolo PP, Conti E, Sebastiani G, Lacquaniti S, Mandras R, Milazzo MG, Dogliani N, De Giuli P, Fasolis G. Skewing towards neuroendocrine phenotype in high grade or high stage androgen-responsive primary prostate cancer. Eur Urol. 2005;48:215–21. Discussion 221–213PubMedCrossRefGoogle Scholar
  37. 37.
    Adlakha H, Bostwick DG. Paneth cell-like change in prostatic adenocarcinoma represents neuroendocrine differentiation: report of 30 cases. Hum Pathol. 1994;25:135–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Kuroda N, Katto K, Shiotsu T, Lee GH. Prostatic adenocarcinoma with Paneth cell-like change. APMIS. 2007;115:857–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Tamas EF, Epstein JI. Prognostic significance of paneth cell-like neuroendocrine differentiation in adenocarcinoma of the prostate. Am J Surg Pathol. 2006;30:980–5.PubMedCrossRefGoogle Scholar
  40. 40.
    So JS, Gordetsky J, Epstein JI. Variant of prostatic adenocarcinoma with Paneth cell-like neuroendocrine differentiation readily misdiagnosed as Gleason pattern 5. Hum Pathol. 2014;45:2388–93.PubMedCrossRefGoogle Scholar
  41. 41.
    Park K, Chen Z, MacDonald TY, Siddiqui J, Ye H, Erbersdobler A, Shevchuk MM, Robinson BD, Sanda MG, Chinnaiyan AM, et al. Prostate cancer with Paneth cell-like neuroendocrine differentiation has recognizable histomorphology and harbors AURKA gene amplification. Hum Pathol. 2014;45:2136–43.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Reyes A, Moran CA. Low-grade neuroendocrine carcinoma (carcinoid tumor) of the prostate. Arch Pathol Lab Med. 2004;128:e166–8.PubMedGoogle Scholar
  43. 43.
    Wang W, Epstein JI. Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am J Surg Pathol. 2008;32:65–71.PubMedCrossRefGoogle Scholar
  44. 44.
    Yao JL, Madeb R, Bourne P, Lei J, Yang X, Tickoo S, Liu Z, Tan D, Cheng L, Hatem F, et al. Small cell carcinoma of the prostate: an immunohistochemical study. Am J Surg Pathol. 2006;30:705–12.PubMedCrossRefGoogle Scholar
  45. 45.
    Schron DS, Gipson T, Mendelsohn G. The histogenesis of small cell carcinoma of the prostate. An immunohistochemical study. Cancer. 1984;53:2478–80.PubMedCrossRefGoogle Scholar
  46. 46.
    Agoff SN, Lamps LW, Philip AT, Amin MB, Schmidt RA, True LD, Folpe AL. Thyroid transcription factor-1 is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod Pathol. 2000;13:238–42.PubMedCrossRefGoogle Scholar
  47. 47.
    Ordonez NG. Value of thyroid transcription factor-1 immunostaining in distinguishing small cell lung carcinomas from other small cell carcinomas. Am J Surg Pathol. 2000;24:1217–23.PubMedCrossRefGoogle Scholar
  48. 48.
    Lotan TL, Gupta NS, Wang W, Toubaji A, Haffner MC, Chaux A, Hicks JL, Meeker AK, Bieberich CJ, De Marzo AM, et al. ERG gene rearrangements are common in prostatic small cell carcinomas. Mod Pathol. 2011;24:820–8.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Guo CC, Dancer JY, Wang Y, Aparicio A, Navone NM, Troncoso P, Czerniak BA. TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate. Hum Pathol. 2011;42:11–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Aparicio AM, Harzstark AL, Corn PG, Wen S, Araujo JC, Tu SM, Pagliaro LC, Kim J, Millikan RE, Ryan C, et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res. 2013;19:3621–30.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Yumiba S, Asakura T, Okada T, Satoh M, Nin M, Tsujihata M. Etoposide and carboplatin effective for treatment of small cell carcinoma of prostate : a report of two cases. Hinyokika Kiyo. 2016;62:639–45.PubMedGoogle Scholar
  53. 53.
    Yossi S, Brahmi T, Enachescu C, Selmaji I, Lapierre A, Samlali H, Chapet O. Management of neuroendocrine prostate carcinoma: literature review. Cancer Radiother. 2016;20:330–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Deorah S, Rao MB, Raman R, Gaitonde K, Donovan JF. Survival of patients with small cell carcinoma of the prostate during 1973–2003: a population-based study. BJU Int. 2012;109:824–30.PubMedCrossRefGoogle Scholar
  55. 55.
    Evans AJ, Humphrey PA, Belani J, van der Kwast TH, Srigley JR. Large cell neuroendocrine carcinoma of prostate: a clinicopathologic summary of 7 cases of a rare manifestation of advanced prostate cancer. Am J Surg Pathol. 2006;30:684–93.PubMedCrossRefGoogle Scholar
  56. 56.
    Mosquera JM, Beltran H, Park K, MacDonald TY, Robinson BD, Tagawa ST, Perner S, Bismar TA, Erbersdobler A, Dhir R, et al. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. Neoplasia. 2013;15:1–10.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Terry S, Beltran H. The many faces of neuroendocrine differentiation in prostate cancer progression. Front Oncol. 2014;4:60.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Li Z, Sun Y, Chen X, Squires J, Nowroozizadeh B, Liang C, Huang J. p53 mutation directs AURKA overexpression via miR-25 and FBXW7 in prostatic small cell neuroendocrine carcinoma. Mol Cancer Res. 2015;13:584–91.PubMedCrossRefGoogle Scholar
  59. 59.
    Clegg N, Ferguson C, True LD, Arnold H, Moorman A, Quinn JE, Vessella RL, Nelson PS. Molecular characterization of prostatic small-cell neuroendocrine carcinoma. Prostate. 2003;55:55–64.PubMedCrossRefGoogle Scholar
  60. 60.
    Borges GT, Vencio EF, Quek SI, Chen A, Salvanha DM, Vencio RZ, Nguyen HM, Vessella RL, Cavanaugh C, Ware CB, et al. Conversion of prostate adenocarcinoma to small cell carcinoma-like by reprogramming. J Cell Physiol. 2016;231:2040–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Lapuk AV, Wu C, Wyatt AW, McPherson A, McConeghy BJ, Brahmbhatt S, Mo F, Zoubeidi A, Anderson S, Bell RH, et al. From sequence to molecular pathology, and a mechanism driving the neuroendocrine phenotype in prostate cancer. J Pathol. 2012;227:286–97.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kadakia KC, Tomlins SA, Sanghvi SK, Cani AK, Omata K, Hovelson DH, Liu CJ, Cooney KA. Comprehensive serial molecular profiling of an “N of 1” exceptional non-responder with metastatic prostate cancer progressing to small cell carcinoma on treatment. J Hematol Oncol. 2015;8:109.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Priemer DS, Montironi R, Wang L, Williamson SR, Lopez-Beltran A, Cheng L. Neuroendocrine tumors of the prostate: emerging insights from molecular data and updates to the 2016 World Health Organization classification. Endocr Pathol. 2016;27:123–35.PubMedCrossRefGoogle Scholar
  64. 64.
    Heinlein CA, Chang C. The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol. 2002;16:2181–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Cunha GR, Cooke PS, Kurita T. Role of stromal-epithelial interactions in hormonal responses. Arch Histol Cytol. 2004;67:417–34.PubMedCrossRefGoogle Scholar
  66. 66.
    Linja MJ, Savinainen KJ, Saramaki OR, Tammela TL, Vessella RL, Visakorpi T. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res. 2001;61:3550–5.PubMedGoogle Scholar
  67. 67.
    Ho Y, Dehm SM. Androgen receptor rearrangement and splicing variants in resistance to endocrine therapies in prostate cancer. Endocrinology. 2017;158(6):1533–42.PubMedCrossRefGoogle Scholar
  68. 68.
    Waltering KK, Urbanucci A, Visakorpi T. Androgen receptor (AR) aberrations in castration-resistant prostate cancer. Mol Cell Endocrinol. 2012;360:38–43.PubMedCrossRefGoogle Scholar
  69. 69.
    Wang L, Williamson SR, Zhang S, Huang J, Montironi R, Davison DD, Wang M, Yao JL, Lopez-Beltran A, Osunkoya AO, et al. Increased androgen receptor gene copy number is associated with TMPRSS2-ERG rearrangement in prostatic small cell carcinoma. Mol Carcinog. 2015;54:900–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Steketee K, Timmerman L, Ziel-van der Made AC, Doesburg P, Brinkmann AO, Trapman J. Broadened ligand responsiveness of androgen receptor mutants obtained by random amino acid substitution of H874 and mutation hot spot T877 in prostate cancer. Int J Cancer. 2002;100:309–17.PubMedCrossRefGoogle Scholar
  71. 71.
    Lu C, Luo J. Decoding the androgen receptor splice variants. Transl Androl Urol. 2013;2:178–86.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC, Attard G, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161:1215–28.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Nadiminty N, Tummala R, Liu C, Yang J, Lou W, Evans CP, Gao AC. NF-kappaB2/p52 induces resistance to enzalutamide in prostate cancer: role of androgen receptor and its variants. Mol Cancer Ther. 2013;12:1629–37.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Mostaghel EA, Marck BT, Plymate SR, Vessella RL, Balk S, Matsumoto AM, Nelson PS, Montgomery RB. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res. 2011;17:5913–25.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Hornberg E, Ylitalo EB, Crnalic S, Antti H, Stattin P, Widmark A, Bergh A, Wikstrom P. Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS One. 2011;6:e19059.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, de Wit R, Mulders P, Chi KN, Shore ND, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367:1187–97.PubMedCrossRefGoogle Scholar
  77. 77.
    de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB Jr, Saad F, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011;364:1995–2005.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015;15:701–11.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, Marotz C, Giannopoulou E, Chakravarthi BV, Varambally S, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22:298–305.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Lee JK, Phillips JW, Smith BA, Park JW, Stoyanova T, McCaffrey EF, Baertsch R, Sokolov A, Meyerowitz JG, Mathis C, et al. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. Cancer Cell. 2016;29:536–47.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Vlachostergios PJ, Papandreou CN. Targeting neuroendocrine prostate cancer: molecular and clinical perspectives. Front Oncol. 2015;5:6.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, Puca L, Cyrta J, Sboner A, Noorzad Z, MacDonald T, et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell. 2016;30:563–77.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Chong JA, Tapia-Ramirez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell. 1995;80:949–57.PubMedCrossRefGoogle Scholar
  84. 84.
    Schoenherr CJ, Anderson DJ. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science. 1995;267:1360–3.PubMedCrossRefGoogle Scholar
  85. 85.
    Chen ZF, Paquette AJ, Anderson DJ. NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nat Genet. 1998;20:136–42.PubMedCrossRefGoogle Scholar
  86. 86.
    Svensson C, Ceder J, Iglesias-Gato D, Chuan YC, Pang ST, Bjartell A, Martinez RM, Bott L, Helczynski L, Ulmert D, et al. REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer. Nucleic Acids Res. 2014;42:999–1015.PubMedCrossRefGoogle Scholar
  87. 87.
    Lin TP, Chang YT, Lee SY, Campbell M, Wang TC, Shen SH, Chung HJ, Chang YH, Chiu AW, Pan CC, et al. REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling. Oncotarget. 2016;7:26137–51.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Chang YT, Lin TP, Campbell M, Pan CC, Lee SH, Lee HC, Yang MH, Kung HJ, Chang PC. REST is a crucial regulator for acquiring EMT-like and stemness phenotypes in hormone-refractory prostate cancer. Sci Rep. 2017;7:42795.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Erasmus CE, Verhagen WI, Wauters CA, van Lindert EJ. Brain metastasis from prostate small cell carcinoma: not to be neglected. Can J Neurol Sci. 2002;29:375–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Chen H, Sun Y, Wu C, Magyar CE, Li X, Cheng L, Yao JL, Shen S, Osunkoya AO, Liang C, Huang J. Pathogenesis of prostatic small cell carcinoma involves the inactivation of the P53 pathway. Endocr Relat Cancer. 2012;19:321–31.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Tan HL, Sood A, Rahimi HA, Wang W, Gupta N, Hicks J, Mosier S, Gocke CD, Epstein JI, Netto GJ, et al. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clin Cancer Res. 2014;20:890–903.PubMedCrossRefGoogle Scholar
  92. 92.
    Thangavel C, Boopathi E, Liu Y, Haber A, Ertel A, Bhardwaj A, Addya S, Williams N, Ciment SJ, Cotzia P, et al. RB loss promotes prostate cancer metastasis. Cancer Res. 2017;77:982–95.PubMedCrossRefGoogle Scholar
  93. 93.
    Labrecque MP, Takhar MK, Nason R, Santacruz S, Tam KJ, Massah S, Haegert A, Bell RH, Altamirano-Dimas M, Collins CC, et al. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells. Oncotarget. 2016;7:24284–302.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Cairns P, Okami K, Halachmi S, Halachmi N, Esteller M, Herman JG, Jen J, Isaacs WB, Bova GS, Sidransky D. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res. 1997;57:4997–5000.PubMedGoogle Scholar
  95. 95.
    Qu X, Randhawa G, Friedman C, Kurland BF, Glaskova L, Coleman I, Mostaghel E, Higano CS, Porter C, Vessella R, et al. A three-marker FISH panel detects more genetic aberrations of AR, PTEN and TMPRSS2/ERG in castration-resistant or metastatic prostate cancers than in primary prostate tumors. PLoS One. 2013;8:e74671.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Pesche S, Latil A, Muzeau F, Cussenot O, Fournier G, Longy M, Eng C, Lidereau R. PTEN/MMAC1/TEP1 involvement in primary prostate cancers. Oncogene. 1998;16:2879–83.PubMedCrossRefGoogle Scholar
  97. 97.
    Beltran H, Yelensky R, Frampton GM, Park K, Downing SR, MacDonald TY, Jarosz M, Lipson D, Tagawa ST, Nanus DM, et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol. 2013;63:920–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487:239–43.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Wise HM, Hermida MA, Leslie NR. Prostate cancer, PI3K, PTEN and prognosis. Clin Sci (Lond). 2017;131:197–210.CrossRefGoogle Scholar
  100. 100.
    Conley-LaComb MK, Saliganan A, Kandagatla P, Chen YQ, Cher ML, Chinni SR. PTEN loss mediated Akt activation promotes prostate tumor growth and metastasis via CXCL12/CXCR4 signaling. Mol Cancer. 2013;12:85.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ham WS, Cho NH, Kim WT, Ju HJ, Lee JS, Choi YD. Pathological effects of prostate cancer correlate with neuroendocrine differentiation and PTEN expression after bicalutamide monotherapy. J Urol. 2009;182:1378–84.PubMedCrossRefGoogle Scholar
  102. 102.
    Ferraldeschi R, Nava Rodrigues D, Riisnaes R, Miranda S, Figueiredo I, Rescigno P, Ravi P, Pezaro C, Omlin A, Lorente D, et al. PTEN protein loss and clinical outcome from castration-resistant prostate cancer treated with abiraterone acetate. Eur Urol. 2015;67:795–802.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Lahdensuo K, Erickson A, Saarinen I, Seikkula H, Lundin J, Lundin M, Nordling S, Butzow A, Vasarainen H, Bostrom PJ, et al. Loss of PTEN expression in ERG-negative prostate cancer predicts secondary therapies and leads to shorter disease-specific survival time after radical prostatectomy. Mod Pathol. 2016;29:1565–74.PubMedCrossRefGoogle Scholar
  104. 104.
    Li Y, Donmez N, Sahinalp C, Xie N, Wang Y, Xue H, Mo F, Beltran H, Gleave M, Wang Y, et al. SRRM4 drives neuroendocrine transdifferentiation of prostate adenocarcinoma under androgen receptor pathway inhibition. Eur Urol. 2017;71:68–78.PubMedCrossRefGoogle Scholar
  105. 105.
    Lin LC, Gao AC, Lai CH, Hsieh JT, Lin H. Induction of neuroendocrine differentiation in castration resistant prostate cancer cells by adipocyte differentiation-related protein (ADRP) delivered by exosomes. Cancer Lett. 2017;391:74–82.PubMedCrossRefGoogle Scholar
  106. 106.
    Scheble VJ, Braun M, Beroukhim R, Mermel CH, Ruiz C, Wilbertz T, Stiedl AC, Petersen K, Reischl M, Kuefer R, et al. ERG rearrangement is specific to prostate cancer and does not occur in any other common tumor. Mod Pathol. 2010;23:1061–7.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Beltran H, Jendrisak A, Landers M, Mosquera JM, Kossai M, Louw J, Krupa R, Graf RP, Schreiber NA, Nanus DM, et al. The initial detection and partial characterization of circulating tumor cells in neuroendocrine prostate cancer. Clin Cancer Res. 2016;22:1510–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Rescigno P, Rodrigues DN, de Bono JS. Circulating biomarkers of neuroendocrine prostate cancer: an unmet challenge. BJU Int. 2017;119:3–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineWeill Cornell Medical CollegeNew YorkUSA
  2. 2.Department of Pathology and Laboratory MedicineNew York-Presbyterian Hospital, Weill Cornell Medical CollegeNew YorkUSA
  3. 3.Englander Institute for Precision MedicineNew York-Presbyterian Hospital, Weill Cornell Medical CollegeNew YorkUSA

Personalised recommendations