Castration-Resistant Prostate Cancer

  • Alastair H. Davies
  • Jennifer L. Bishop
  • Amina Zoubeidi
Part of the Molecular Pathology Library book series (MPLB)


Men with advanced prostate cancer are typically treated with hormonal therapy, which results in tumor shrinkage. However, tumors relapse and develop into a highly aggressive and lethal form of the disease, termed castration-resistant prostate cancer (CRPC). Evidence suggests that tumor cells acquire new genetic and epigenetic alterations that enable them to survive in the castrated state. Yet, it has recently emerged that immune cells in the tumor microenvironment and a population of rare, pre-existing cancer stem cells can also facilitate the outgrowth of CRPC following hormonal therapy. Targeting the cells that survive therapy is principal to prevent the development of CRPC. This chapter will describe the molecular identity of CRPC and the cellular mechanisms employed by prostate cancer cells that drive progression to this lethal phase of prostate cancer. The treatment of CRPC is reviewed, with a focus on emerging therapeutic strategies targeting critical pathways in castration-resistant cancer cells.


Castration-resistant prostate cancer (CRPC) Androgen deprivation therapy Androgen-independent Androgen receptor Gene expression signature Alternative pathways Cancer stem cells Microenvironment Targeted therapy 



A. Davies is a Prostate Cancer Foundation young investigator and receives additional support from the Canadian Institutes of Health Research. J. Bishop is supported by the Prostate Cancer Foundation, USA, and A. Zoubeidi by the Michael Smith Foundation for Health Research and Prostate Cancer Canada.


  1. 1.
    Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1(1):34–45. PubMed PMID: 11900250.PubMedCrossRefGoogle Scholar
  2. 2.
    Ryan CJ, Tindall DJ. Androgen receptor rediscovered: the new biology and targeting the androgen receptor therapeutically. J Clin Oncol. 2011;29(27):3651–8. PubMed PMID: 21859989.PubMedCrossRefGoogle Scholar
  3. 3.
    Holzbeierlein J, Lal P, LaTulippe E, Smith A, Satagopan J, Zhang L, et al. Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol. 2004;164(1):217–27. PubMed PMID: 14695335. Pubmed Central PMCID: 1602218PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hellerstedt BA, Pienta KJ. The current state of hormonal therapy for prostate cancer. CA Cancer J Clin. 2002;52(3):154–79. PubMed PMID: 12018929.PubMedCrossRefGoogle Scholar
  5. 5.
    Kirby M, Hirst C, Crawford ED. Characterising the castration-resistant prostate cancer population: a systematic review. Int J Clin Pract. 2011;65(11):1180–92. PubMed PMID: 21995694.PubMedCrossRefGoogle Scholar
  6. 6.
    Inoue T, Segawa T, Kamba T, Yoshimura K, Nakamura E, Nishiyama H, et al. Prevalence of skeletal complications and their impact on survival of hormone refractory prostate cancer patients in Japan. Urology. 2009;73(5):1104–9. PubMed PMID: 19394511.PubMedCrossRefGoogle Scholar
  7. 7.
    Smith MR, Kabbinavar F, Saad F, Hussain A, Gittelman MC, Bilhartz DL, et al. Natural history of rising serum prostate-specific antigen in men with castrate nonmetastatic prostate cancer. J Clin Oncol. 2005;23(13):2918–25. PubMed PMID: 15860850.PubMedCrossRefGoogle Scholar
  8. 8.
    de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008;14(19):6302–9. PubMed PMID: 18829513.PubMedCrossRefGoogle Scholar
  9. 9.
    Scher HI, Heller G, Molina A, Attard G, Danila DC, Jia X, et al. Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J Clin Oncol. 2015;33(12):1348–55. PubMed PMID: 25800753.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Armstrong AJ, Eisenberger MA, Halabi S, Oudard S, Nanus DM, Petrylak DP, et al. Biomarkers in the management and treatment of men with metastatic castration-resistant prostate cancer. Eur Urol. 2012;61(3):549–59. PubMed PMID: 22099611. Pubmed Central PMCID: 3445625PubMedCrossRefGoogle Scholar
  11. 11.
    Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, et al. EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 2014;65(2):467–79. PubMed PMID: 24321502.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004;10(1):33–9. PubMed PMID: 14702632.PubMedCrossRefGoogle Scholar
  13. 13.
    Mendiratta P, Mostaghel E, Guinney J, Tewari AK, Porrello A, Barry WT, et al. Genomic strategy for targeting therapy in castration-resistant prostate cancer. J Clin Oncol. 2009;27(12):2022–9. PubMed PMID: 19289629.PubMedCrossRefGoogle Scholar
  14. 14.
    Heemers HV, Schmidt LJ, Sun Z, Regan KM, Anderson SK, Duncan K, et al. Identification of a clinically relevant androgen-dependent gene signature in prostate cancer. Cancer Res. 2011;71(5):1978–88. PubMed PMID: 21324924. Pubmed Central PMCID: 3077061PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Comstock CE, Knudsen KE. The complex role of AR signaling after cytotoxic insult: implications for cell-cycle-based chemotherapeutics. Cell Cycle. 2007;6(11):1307–13. PubMed PMID: 17568191.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009;138(2):245–56. PubMed PMID: 19632176. Pubmed Central PMCID: 2726827.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Sharma NL, Massie CE, Ramos-Montoya A, Zecchini V, Scott HE, Lamb AD, et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell. 2013;23(1):35–47. PubMed PMID: 23260764.PubMedCrossRefGoogle Scholar
  18. 18.
    Olmos D, Brewer D, Clark J, Danila DC, Parker C, Attard G, et al. Prognostic value of blood mRNA expression signatures in castration-resistant prostate cancer: a prospective, two-stage study. Lancet Oncol. 2012;13(11):1114–24. PubMed PMID: 23059046.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ross RW, Galsky MD, Scher HI, Magidson J, Wassmann K, Lee GS, et al. A whole-blood RNA transcript-based prognostic model in men with castration-resistant prostate cancer: a prospective study. Lancet Oncol. 2012;13(11):1105–13. PubMed PMID: 23059047.PubMedCrossRefGoogle Scholar
  20. 20.
    Shen MM, Abate-Shen C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev. 2010;24(18):1967–2000. PubMed PMID: 20844012. Pubmed Central PMCID: 2939361PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gallagher DJ, Gaudet MM, Pal P, Kirchhoff T, Balistreri L, Vora K, et al. Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res. 2010;16(7):2115–21. PubMed PMID: 20215531. Pubmed Central PMCID: 3713614.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Grasso CS, YM W, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487(7406):239–43. PubMed PMID: 22722839. Pubmed Central PMCID: 3396711PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Waltering KK, Urbanucci A, Visakorpi T. Androgen receptor (AR) aberrations in castration-resistant prostate cancer. Mol Cell Endocrinol. 2012;360(1-2):38–43. PubMed PMID: 22245783.PubMedCrossRefGoogle Scholar
  24. 24.
    Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JM, Papaemmanuil E, et al. The evolutionary history of lethal metastatic prostate cancer. Nature. 2015;520(7547):353–7. PubMed PMID: 25830880.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Beltran H, Yelensky R, Frampton GM, Park K, Downing SR, MacDonald TY, et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol. 2013;63(5):920–6. PubMed PMID: 22981675. Pubmed Central PMCID: 3615043PubMedCrossRefGoogle Scholar
  26. 26.
    Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11–22. PubMed PMID: 20579941. Pubmed Central PMCID: 3198787PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Friedlander TW, Roy R, Tomlins SA, Ngo VT, Kobayashi Y, Azameera A, et al. Common structural and epigenetic changes in the genome of castration-resistant prostate cancer. Cancer Res. 2012;72(3):616–25. PubMed PMID: 22158653.PubMedCrossRefGoogle Scholar
  28. 28.
    Sharma A, Yeow WS, Ertel A, Coleman I, Clegg N, Thangavel C, et al. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J Clin Invest. 2010;120(12):4478–92. PubMed PMID: 21099110. Pubmed Central PMCID: 2993601.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Mulholland DJ, Tran LM, Li Y, Cai H, Morim A, Wang S, et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell. 2011;19(6):792–804. PubMed PMID: 21620777. Pubmed Central PMCID: 3157296PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Castro E, Goh C, Olmos D, Saunders E, Leongamornlert D, Tymrakiewicz M, et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol. 2013;31(14):1748–57. PubMed PMID: 23569316. Pubmed Central PMCID: 3641696.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Francis JC, McCarthy A, Thomsen MK, Ashworth A, Swain A. Brca2 and Trp53 deficiency cooperate in the progression of mouse prostate tumourigenesis. PLoS Genet. 2010;6(6):e1000995. PubMed PMID: 20585617. Pubmed Central PMCID: 2891704PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Demichelis F, Fall K, Perner S, Andren O, Schmidt F, Setlur SR, et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene. 2007;26(31):4596–9. PubMed PMID: 17237811.PubMedCrossRefGoogle Scholar
  33. 33.
    Mehra R, Tomlins SA, Yu J, Cao X, Wang L, Menon A, et al. Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer. Cancer Res. 2008;68(10):3584–90. PubMed PMID: 18483239. Pubmed Central PMCID: 2677168PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Mao X, Shaw G, James SY, Purkis P, Kudahetti SC, Tsigani T, et al. Detection of TMPRSS2:ERG fusion gene in circulating prostate cancer cells. Asian J Androl. 2008;10(3):467–73. PubMed PMID: 18385909.PubMedCrossRefGoogle Scholar
  35. 35.
    Reibenwein J, Pils D, Horak P, Tomicek B, Goldner G, Worel N, et al. Promoter hypermethylation of GSTP1, AR, and 14-3-3sigma in serum of prostate cancer patients and its clinical relevance. Prostate. 2007;67(4):427–32. PubMed PMID: 17192910.PubMedCrossRefGoogle Scholar
  36. 36.
    Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W, et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell. 2008;132(6):958–70. PubMed PMID: 18358809. Pubmed Central PMCID: 2323438PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Cai C, He HH, Chen S, Coleman I, Wang H, Fang Z, et al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell. 2011;20(4):457–71. PubMed PMID: 22014572. Pubmed Central PMCID: 3225024PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44(6):685–9. PubMed PMID: 22610119. Pubmed Central PMCID: 3673022PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ellinger J, Kahl P, von der Gathen J, Heukamp LC, Gutgemann I, Walter B, et al. Global histone H3K27 methylation levels are different in localized and metastatic prostate cancer. Cancer Invest. 2012;30(2):92–7. PubMed PMID: 22149091.PubMedCrossRefGoogle Scholar
  40. 40.
    Ezhkova E, Pasolli HA, Parker JS, Stokes N, IH S, Hannon G, et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell. 2009;136(6):1122–35. PubMed PMID: 19303854. Pubmed Central PMCID: 2716120PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419(6907):624–9. PubMed PMID: 12374981.PubMedCrossRefGoogle Scholar
  42. 42.
    Yu J, Yu J, Rhodes DR, Tomlins SA, Cao X, Chen G, et al. A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res. 2007;67(22):10657–63. PubMed PMID: 18006806.PubMedCrossRefGoogle Scholar
  43. 43.
    Yu J, Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell. 2010;17(5):443–54. PubMed PMID: 20478527. Pubmed Central PMCID: 2874722PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008;322(5908):1695–9. PubMed PMID: 19008416. Pubmed Central PMCID: 2684823PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Yu J, Cao Q, Yu J, Wu L, Dallol A, Li J, et al. The neuronal repellent SLIT2 is a target for repression by EZH2 in prostate cancer. Oncogene. 2010;29(39):5370–80. PubMed PMID: 20622896. Pubmed Central PMCID: 2948081PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Cao Q, Yu J, Dhanasekaran SM, Kim JH, Mani RS, Tomlins SA, et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene. 2008;27(58):7274–84. PubMed PMID: 18806826. Pubmed Central PMCID: 2690514PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Attard G, Swennenhuis JF, Olmos D, Reid AH, Vickers E, A'Hern R, et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res. 2009;69(7):2912–8. PubMed PMID: 19339269.PubMedCrossRefGoogle Scholar
  48. 48.
    Azad AA, Volik SV, Wyatt AW, Haegert A, Le Bihan S, Bell RH, et al. Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res. 2015;21:2315. PubMed PMID: 25712683.PubMedCrossRefGoogle Scholar
  49. 49.
    Mostaghel EA, Page ST, Lin DW, Fazli L, Coleman IM, True LD, et al. Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res. 2007;67(10):5033–41. PubMed PMID: 17510436.PubMedCrossRefGoogle Scholar
  50. 50.
    Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res. 2006;66(5):2815–25. PubMed PMID: 16510604.PubMedCrossRefGoogle Scholar
  51. 51.
    Locke JA, Guns ES, Lubik AA, Adomat HH, Hendy SC, Wood CA, et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res. 2008;68(15):6407–15. PubMed PMID: 18676866.PubMedCrossRefGoogle Scholar
  52. 52.
    Mohler JL, Titus MA, Bai S, Kennerley BJ, Lih FB, Tomer KB, et al. Activation of the androgen receptor by intratumoral bioconversion of androstanediol to dihydrotestosterone in prostate cancer. Cancer Res. 2011;71(4):1486–96. PubMed PMID: 21303972. Pubmed Central PMCID: 3075600PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 2008;68(11):4447–54. PubMed PMID: 18519708. Pubmed Central PMCID: 2536685PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Cai C, Chen S, Ng P, Bubley GJ, Nelson PS, Mostaghel EA, et al. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res. 2011;71(20):6503–13. PubMed PMID: 21868758. Pubmed Central PMCID: 3209585PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Auchus RJ. The backdoor pathway to dihydrotestosterone. Trends Endocrinol Metab. 2004;15(9):432–8. PubMed PMID: 15519890.PubMedCrossRefGoogle Scholar
  56. 56.
    Gaddipati JP, McLeod DG, Heidenberg HB, Sesterhenn IA, Finger MJ, Moul JW, et al. Frequent detection of codon 877 mutation in the androgen receptor gene in advanced prostate cancers. Cancer Res. 1994;54(11):2861–4. PubMed PMID: 8187068.PubMedGoogle Scholar
  57. 57.
    Veldscholte J, Berrevoets CA, Ris-Stalpers C, Kuiper GG, Jenster G, Trapman J, et al. The androgen receptor in LNCaP cells contains a mutation in the ligand binding domain which affects steroid binding characteristics and response to antiandrogens. J Steroid Biochem Mol Biol. 1992;41(3-8):665–9. PubMed PMID: 1562539.PubMedCrossRefGoogle Scholar
  58. 58.
    Zhao XY, Malloy PJ, Krishnan AV, Swami S, Navone NM, Peehl DM, et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med. 2000;6(6):703–6. PubMed PMID: 10835690.PubMedCrossRefGoogle Scholar
  59. 59.
    Korpal M, Korn JM, Gao X, Rakiec DP, Ruddy DA, Doshi S, et al. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov. 2013;3(9):1030–43. PubMed PMID: 23842682.PubMedCrossRefGoogle Scholar
  60. 60.
    Xu K, ZJ W, Groner AC, He HH, Cai C, Lis RT, et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science. 2012;338(6113):1465–9. PubMed PMID: 23239736. Pubmed Central PMCID: 3625962PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Adler HL, McCurdy MA, Kattan MW, Timme TL, Scardino PT, Thompson TC. Elevated levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with metastatic prostatic carcinoma. J Urol. 1999;161(1):182–7. PubMed PMID: 10037394.PubMedCrossRefGoogle Scholar
  62. 62.
    Yang L, Wang L, Lin HK, Kan PY, Xie S, Tsai MY, et al. Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells. Biochem Biophys Res Commun. 2003;305(3):462–9. PubMed PMID: 12763015.PubMedCrossRefGoogle Scholar
  63. 63.
    Wen Y, MC H, Makino K, Spohn B, Bartholomeusz G, Yan DH, et al. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res. 2000;60(24):6841–5. PubMed PMID: 11156376.PubMedGoogle Scholar
  64. 64.
    Guo Z, Dai B, Jiang T, Xu K, Xie Y, Kim O, et al. Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell. 2006;10(4):309–19. PubMed PMID: 17045208.PubMedCrossRefGoogle Scholar
  65. 65.
    Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H, et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. 2009;69(6):2305–13. PubMed PMID: 19244107. Pubmed Central PMCID: 2672822PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E, et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 2009;69(1):16–22. PubMed PMID: 19117982. Pubmed Central PMCID: 2614301PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Watson PA, Chen YF, Balbas MD, Wongvipat J, Socci ND, Viale A, et al. Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci U S A. 2010;107(39):16759–65. PubMed PMID: 20823238. Pubmed Central PMCID: 2947883.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hu R, Lu C, Mostaghel EA, Yegnasubramanian S, Gurel M, Tannahill C, et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res. 2012;72(14):3457–62. PubMed PMID: 22710436. Pubmed Central PMCID: 3415705PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW, Hsieh JT, et al. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res. 1992;52(24):6940–4. PubMed PMID: 1458483.PubMedGoogle Scholar
  70. 70.
    Liu AY, Corey E, Bladou F, Lange PH, Vessella RL. Prostatic cell lineage markers: emergence of BCL2+ cells of human prostate cancer xenograft LuCaP 23 following castration. Int J Cancer. 1996;65(1):85–9. PubMed PMID: 8543402.PubMedCrossRefGoogle Scholar
  71. 71.
    Bronte V, Kasic T, Gri G, Gallana K, Borsellino G, Marigo I, et al. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med. 2005;201(8):1257–68. PubMed PMID: 15824085. Pubmed Central PMCID: 2213151.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Ebelt K, Babaryka G, Frankenberger B, Stief CG, Eisenmenger W, Kirchner T, et al. Prostate cancer lesions are surrounded by FOXP3+, PD-1+ and B7-H1+ lymphocyte clusters. Eur J Cancer. 2009;45(9):1664–72. PubMed PMID: 19318244.PubMedCrossRefGoogle Scholar
  73. 73.
    Sfanos KS, Bruno TC, Meeker AK, De Marzo AM, Isaacs WB, Drake CG. Human prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+. Prostate. 2009;69(15):1694–703. PubMed PMID: 19670224. Pubmed Central PMCID: 2782577.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Drake CG, Doody AD, Mihalyo MA, Huang CT, Kelleher E, Ravi S, et al. Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell. 2005;7(3):239–49. PubMed PMID: 15766662. Pubmed Central PMCID: 2846360.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Sutherland JS, Goldberg GL, Hammett MV, Uldrich AP, Berzins SP, Heng TS, et al. Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol. 2005;175(4):2741–53. PubMed PMID: 16081852.PubMedCrossRefGoogle Scholar
  76. 76.
    Roden AC, Moser MT, Tri SD, Mercader M, Kuntz SM, Dong H, et al. Augmentation of T cell levels and responses induced by androgen deprivation. J Immunol. 2004;173(10):6098–108. PubMed PMID: 15528346.PubMedCrossRefGoogle Scholar
  77. 77.
    Tang S, Moore ML, Grayson JM, Dubey P. Increased CD8+ T-cell function following castration and immunization is countered by parallel expansion of regulatory T cells. Cancer Res. 2012;72(8):1975–85. PubMed PMID: 22374980. Pubmed Central PMCID: 3690568PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ammirante M, Luo JL, Grivennikov S, Nedospasov S, Karin M. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature. 2010;464(7286):302–5. PubMed PMID: 20220849. Pubmed Central PMCID: 2866639PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Bishop JL, Thaper D, Zoubeidi A. The multifaceted roles of STAT3 signaling in the progression of prostate cancer. Cancer. 2014;6(2):829–59. PubMed PMID: 24722453. Pubmed Central PMCID: 4074806CrossRefGoogle Scholar
  80. 80.
    Guzman-Ramirez N, Voller M, Wetterwald A, Germann M, Cross NA, Rentsch CA, et al. In vitro propagation and characterization of neoplastic stem/progenitor-like cells from human prostate cancer tissue. Prostate. 2009;69(15):1683–93. PubMed PMID: 19644960.PubMedCrossRefGoogle Scholar
  81. 81.
    Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene. 2006;25(12):1696–708. PubMed PMID: 16449977.PubMedCrossRefGoogle Scholar
  82. 82.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11. PubMed PMID: 11689955.PubMedCrossRefGoogle Scholar
  83. 83.
    Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313–9. PubMed PMID: 21386835.PubMedCrossRefGoogle Scholar
  84. 84.
    Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea--a paradigm shift. Cancer Res. 2006;66(4):1883–90. discussion 95–6. PubMed PMID: 16488983.PubMedCrossRefGoogle Scholar
  85. 85.
    van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Lippitt JM, Guzman-Ramirez N, et al. High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res. 2010;70(12):5163–73. PubMed PMID: 20516116.PubMedCrossRefGoogle Scholar
  86. 86.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946–51. PubMed PMID: 16322242.PubMedCrossRefGoogle Scholar
  87. 87.
    Qin J, Liu X, Laffin B, Chen X, Choy G, Jeter CR, et al. The PSA(-/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell. 2012;10(5):556–69. PubMed PMID: 22560078. Pubmed Central PMCID: 3348510PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Gu G, Yuan J, Wills M, Kasper S. Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res. 2007;67(10):4807–15. PubMed PMID: 17510410.PubMedCrossRefGoogle Scholar
  89. 89.
    Lee SO, Ma Z, Yeh CR, Luo J, Lin TH, Lai KP, et al. New therapy targeting differential androgen receptor signaling in prostate cancer stem/progenitor vs. non-stem/progenitor cells. J Mol Cell Biol. 2013;5(1):14–26. PubMed PMID: 22831834. Pubmed Central PMCID: 3570051PubMedCrossRefGoogle Scholar
  90. 90.
    Seiler D, Zheng J, Liu G, Wang S, Yamashiro J, Reiter RE, et al. Enrichment of putative prostate cancer stem cells after androgen deprivation: upregulation of pluripotency transactivators concurs with resistance to androgen deprivation in LNCaP cell lines. Prostate. 2013;73(13):1378–90. PubMed PMID: 23728788.PubMedCrossRefGoogle Scholar
  91. 91.
    Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351(15):1502–12. PubMed PMID: 15470213.PubMedCrossRefGoogle Scholar
  92. 92.
    Petrylak DP, Tangen CM, Hussain MH, Lara PN Jr, Jones JA, Taplin ME, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med. 2004;351(15):1513–20. PubMed PMID: 15470214.PubMedCrossRefGoogle Scholar
  93. 93.
    Paller CJ, Antonarakis ES. Cabazitaxel: a novel second-line treatment for metastatic castration-resistant prostate cancer. Drug Des Devel Ther. 2011;5:117–24. PubMed PMID: 21448449. Pubmed Central PMCID: 3063116PubMedPubMedCentralGoogle Scholar
  94. 94.
    de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet. 2010;376(9747):1147–54. PubMed PMID: 20888992.PubMedCrossRefGoogle Scholar
  95. 95.
    Potter GA, Barrie SE, Jarman M, Rowlands MG. Novel steroidal inhibitors of human cytochrome P45017 alpha (17 alpha-hydroxylase-C17,20-lyase): potential agents for the treatment of prostatic cancer. J Med Chem. 1995;38(13):2463–71. PubMed PMID: 7608911.PubMedCrossRefGoogle Scholar
  96. 96.
    Fizazi K, Scher HI, Molina A, Logothetis CJ, Chi KN, Jones RJ, et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2012;13(10):983–92. PubMed PMID: 22995653.PubMedCrossRefGoogle Scholar
  97. 97.
    Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 2013;368(2):138–48. PubMed PMID: 23228172. Pubmed Central PMCID: 3683570.PubMedCrossRefGoogle Scholar
  98. 98.
    Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science. 2009;324(5928):787–90. PubMed PMID: 19359544. Pubmed Central PMCID: 2981508PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367(13):1187–97. PubMed PMID: 22894553.PubMedCrossRefGoogle Scholar
  100. 100.
    Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371(5):424–33. PubMed PMID: 24881730. Pubmed Central PMCID: 4418931.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Simons JW. Prostate cancer immunotherapy: beyond immunity to curability. Cancer Immunol Res. 2014;2(11):1034–43. PubMed PMID: 25367978.PubMedCrossRefGoogle Scholar
  102. 102.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22. PubMed PMID: 20818862.PubMedCrossRefGoogle Scholar
  103. 103.
    Sheikh NA, Petrylak D, Kantoff PW, Dela Rosa C, Stewart FP, Kuan LY, et al. Sipuleucel-T immune parameters correlate with survival: an analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer Immunol Immunother. 2013;62(1):137–47. PubMed PMID: 22865266. Pubmed Central PMCID: 3541926.PubMedCrossRefGoogle Scholar
  104. 104.
    Quinn DI, Shore ND, Egawa S, Gerritsen WR, Fizazi K. Immunotherapy for castration-resistant prostate cancer: Progress and new paradigms. Urol Oncol. 2015;33:245. PubMed PMID: 25575714.PubMedCrossRefGoogle Scholar
  105. 105.
    Burotto M, Singh N, Heery CR, Gulley JL, Madan RA. Exploiting synergy: immune-based combinations in the treatment of prostate cancer. Front Oncol. 2014;4:351. PubMed PMID: 25566495. Pubmed Central PMCID: 4264488PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Schellhammer PF, Chodak G, Whitmore JB, Sims R, Frohlich MW, Kantoff PW. Lower baseline prostate-specific antigen is associated with a greater overall survival benefit from sipuleucel-T in the Immunotherapy for Prostate Adenocarcinoma Treatment (IMPACT) trial. Urology. 2013;81(6):1297–302. PubMed PMID: 23582482.PubMedCrossRefGoogle Scholar
  107. 107.
    Drake CG. The potential role of antigen spread in immunotherapy for prostate cancer. Clin Adv Hematol Oncol. 2014;12(5):332–4. PubMed PMID: 25003491.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Gulley JL, Madan RA, Tsang KY, Jochems C, Marte JL, Farsaci B, et al. Immune impact induced by PROSTVAC (PSA-TRICOM), a therapeutic vaccine for prostate cancer. Cancer Immunol Res. 2014;2(2):133–41. PubMed PMID: 24778277. Pubmed Central PMCID: 4004961.PubMedCrossRefGoogle Scholar
  109. 109.
    Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3 - potential mechanisms of action. Nat Rev Immunol. 2014;15(1):45–56. PubMed PMID: 25534622.CrossRefGoogle Scholar
  110. 110.
    Killock D. Prostate cancer: mixed responses to ipilimumab. Nat Rev Urol. 2014;11(6):305. PubMed PMID: 24861332.PubMedCrossRefGoogle Scholar
  111. 111.
    Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(7):700–12. PubMed PMID: 24831977.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54. PubMed PMID: 22658127. Pubmed Central PMCID: 3544539.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Graff JN, Puri S, Bifulco CB, Fox BA, Beer TM. Sustained complete response to CTLA-4 blockade in a patient with metastatic, castration-resistant prostate cancer. Cancer Immunol Res. 2014;2(5):399–403. PubMed PMID: 24795352.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Bishop JL, Sio A, Angeles A, Roberts ME, Azad AA, Chi KN, Zoubeidi A. PD-L1 is highly expressed in Enzalutamide resistant prostate cancer. Oncogtarget. 2015;6:234.Google Scholar
  115. 115.
    Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42. PubMed PMID: 12748652.PubMedCrossRefGoogle Scholar
  116. 116.
    Smith MR, Saad F, Coleman R, Shore N, Fizazi K, Tombal B, et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet. 2012;379(9810):39–46. PubMed PMID: 22093187. Pubmed Central PMCID: 3671878PubMedCrossRefGoogle Scholar
  117. 117.
    Paes FM, Serafini AN. Systemic metabolic radiopharmaceutical therapy in the treatment of metastatic bone pain. Semin Nucl Med. 2010;40(2):89–104. PubMed PMID: 20113678.PubMedCrossRefGoogle Scholar
  118. 118.
    Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–23. PubMed PMID: 23863050.PubMedCrossRefGoogle Scholar
  119. 119.
    Gulley JL, Arlen PM, Bastian A, Morin S, Marte J, Beetham P, et al. Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res. 2005;11(9):3353–62. PubMed PMID: 15867235.PubMedCrossRefGoogle Scholar
  120. 120.
    Heery CR, Madan RA, Bilusic M, Kim JW, Singh NK, Rauchkhorst M, et al. A phase II randomized clinical trial of samarium-153 EDTMP (Sm-153) with or without PsA-tricome vaccine in metastatic castration-resistant prostate cancer (mCRPC) after docetaxel. J Clin Oncol. 2013;31(Supp. 6):abstr102.CrossRefGoogle Scholar
  121. 121.
    Tang Y, Hamburger AW, Wang L, Khan MA, Hussain A. Androgen deprivation and stem cell markers in prostate cancers. Int J Clin Exp Pathol. 2009;3(2):128–38. PubMed PMID: 20126580. Pubmed Central PMCID: 2809992PubMedPubMedCentralGoogle Scholar
  122. 122.
    Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V, Castillo-Martin M, Quinn SA, Rodriguez-Barrueco R, et al. Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell. 2012;22(3):373–88. PubMed PMID: 22975379.PubMedCrossRefGoogle Scholar
  123. 123.
    Civenni G, Malek A, Albino D, Garcia-Escudero R, Napoli S, Di Marco S, et al. RNAi-mediated silencing of Myc transcription inhibits stem-like cell maintenance and tumorigenicity in prostate cancer. Cancer Res. 2013;73(22):6816–27. PubMed PMID: 24063893.PubMedCrossRefGoogle Scholar
  124. 124.
    Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R, et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature. 2014;510(7504):278–82. PubMed PMID: 24759320. Pubmed Central PMCID: 4075966PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Li K, Liu C, Zhou B, Bi L, Huang H, Lin T, et al. Role of EZH2 in the Growth of Prostate Cancer Stem Cells Isolated from LNCaP Cells. Int J Mol Sci. 2013;14(6):11981–93. PubMed PMID: 23739676. Pubmed Central PMCID: 3709767.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Crea F, Hurt EM, Mathews LA, Cabarcas SM, Sun L, Marquez VE, et al. Pharmacologic disruption of Polycomb Repressive Complex 2 inhibits tumorigenicity and tumor progression in prostate cancer. Mol Cancer. 2011;10:40. PubMed PMID: 21501485. Pubmed Central PMCID: 3100246PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Tanaka H, Kono E, Tran CP, Miyazaki H, Yamashiro J, Shimomura T, et al. Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat Med. 2010;16(12):1414–20. PubMed PMID: 21057494. Pubmed Central PMCID: 3088104PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Zhou Y, Yang J, Zhang R, Kopecek J. Combination therapy of prostate cancer with HPMA copolymer conjugates containing PI3K/mTOR inhibitor and docetaxel. Eur J Pharm Biopharm. 2015;89:107–15. PubMed PMID: 25481033. Pubmed Central PMCID: 4355312PubMedCrossRefGoogle Scholar
  129. 129.
    Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. PubMed PMID: 23550210. Pubmed Central PMCID: 4160307PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4. PubMed PMID: 22588877. Pubmed Central PMCID: 3956037.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Alastair H. Davies
    • 1
  • Jennifer L. Bishop
    • 1
  • Amina Zoubeidi
    • 1
  1. 1.Department of Urologic SciencesVancouver Prostate CentreVancouverCanada

Personalised recommendations