Advertisement

Tumor Microenvironment: Prospects for Diagnosis and Prognosis of Prostate Cancer Based on Changes in Tumor-Adjacent Stroma

  • Zhenyu Jia
  • Chung Lee
  • Xiaolin Zi
  • Michael McClelland
  • Dan Mercola
Chapter
Part of the Molecular Pathology Library book series (MPLB)

Abstract

This chapter summarizes the role of stromal cells in the development and progression of prostate cancer and how alterations in gene expression in the tumor-adjacent stroma may be useful for diagnosis and prognosis of prostate cancer. During embryogenesis, prostate stromal cells play a major role in prostate morphogenesis. Prostate stromal cells also play a major role in prostate carcinogenesis and prostate cancer progression. Changes in the stroma of tumor-bearing prostate glands have been used to detect the presence of tumor nearby. Furthermore, since stromal cells exhibit fewer genetic mutations than those in the tumor, gene expression profiles of the tumor-adjacent stromal cells may be a source of reliable biomarkers to predict outcomes during the course of clinical management of patients. The clinical and biological significance of changes in stroma is highlighted.

Keywords

Prostate cancer Microenvironment Multigene profile Classifier Diagnosis Prognosis Clinical test Tumor-adjacent stroma Presence of tumor Stroma-based tests 

Notes

Acknowledgments

This work was supported by the NCI Early Detection Research Network (EDRN) Consortium grant U01 CA152738, the NCI Strategic Partner for the Evaluation of Cancer Signatures (SPECS) consortium U01 CA114810, and by bridging funds from the UCI Chao Family Comprehensive Cancer Center Support Grant NCI CA P3062203. This work was also supported in part by Department of Defense Congressionally Directed Medical Research Programs grants W81XWH-08–1-0720, W81XWH-11–1-0312, and W81XWH-14-PCRP-HDRA and by support from the California Women’s Auxiliary to the Veterans of Foreign Wars.

Disclosures

Michael McClelland and Dan Mercola are the founders of a company, Proveri, Inc., which has an interest in biomarkers for prostate cancer, including diagnosis and prognosis. The participation of MM and DAM in this work and supporting grants has been disclosed to and approved by the UCI Conflict of Interest Committee.

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.PubMedCrossRefGoogle Scholar
  2. 2.
    Key Statistics of Prostate Cancer 2017 [Internet]. 2017. Available from: https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html#.WR53pyyPQ2w.email
  3. 3.
    O’Dowd GJ, Miller MC, Orozco R, Veltri RW. Analysis of repeated biopsy results within 1 year after a noncancer diagnosis. Urology. 2000;55(4):553–9.PubMedCrossRefGoogle Scholar
  4. 4.
    van den Bergh RC, Roemeling S, Roobol MJ, Aus G, Hugosson J, Rannikko AS, et al. Outcomes of men with screen-detected prostate cancer eligible for active surveillance who were managed expectantly. Eur Urol. 2009;55(1):1–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Kronz JD, Allan CH, Shaikh AA, Epstein JI. Predicting cancer following a diagnosis of high-grade prostatic intraepithelial neoplasia on needle biopsy: data on men with more than one follow-up biopsy. Am J Surg Pathol. 2001;25(8):1079–85.PubMedCrossRefGoogle Scholar
  6. 6.
    Andriole GL, Bullock TL, Belani JS, Traxel E, Yan Y, Bostwick DG, et al. Is there a better way to biopsy the prostate? Prospects for a novel transrectal systematic biopsy approach. Urology. 2007;70(6 Suppl):22–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Pepe P, Aragona F. Saturation prostate needle biopsy and prostate cancer detection at initial and repeat evaluation. Urology. 2007;70(6):1131–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Delongchamps NB, de la Roza G, Chandan V, Jones R, Threatte G, Jumbelic M, et al. Diagnostic accuracy of extended biopsies for the staging of microfocal prostate cancers in autopsy specimen. Prostate Cancer Prostatic Dis. 2009;12(2):137–42.PubMedCrossRefGoogle Scholar
  9. 9.
    Corcoran NM, Hong MK, Casey RG, Hurtado-Coll A, Peters J, Harewood L, et al. Upgrade in Gleason score between prostate biopsies and pathology following radical prostatectomy significantly impacts upon the risk of biochemical recurrence. BJU Int. 2011;108(8 Pt 2):E202–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Corcoran NM, Hovens CM, Hong MK, Pedersen J, Casey RG, Connolly S, et al. Underestimation of Gleason score at prostate biopsy reflects sampling error in lower volume tumours. BJU Int. 2012;109(5):660–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Leite KR, Camara-Lopes LH, Cury J, Dall’oglio MF, Sanudo A, Srougi M. Prostate cancer detection at rebiopsy after an initial benign diagnosis: results using sextant extended prostate biopsy. Clinics. 2008;63(3):339–42.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Cunha GR, Chung LW. Stromal-epithelial interactions--I. Induction of prostatic phenotype in urothelium of testicular feminized (Tfm/y) mice. J Steroid Biochem. 1981;14(12):1317–24.PubMedCrossRefGoogle Scholar
  13. 13.
    Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM, Higgins SJ, et al. The endocrinology and developmental biology of the prostate. Endocrine Rev. 1987;8:338–62.CrossRefGoogle Scholar
  14. 14.
    Hay ED. An overview of epithelio-mesenchymal transformation. Acta Anat (Basel). 1995;154(1):8–20.CrossRefGoogle Scholar
  15. 15.
    Cunha GR. Role of mesenchymal-epithelial interactions in normal and abnormal development of the mammary gland and prostate. Cancer. 1994;74(3 Suppl):1030–44.PubMedCrossRefGoogle Scholar
  16. 16.
    Chung LW, Baseman A, Assikis V, Zhau HE. Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J Urol. 2005;173(1):10–20.PubMedCrossRefGoogle Scholar
  17. 17.
    Cunha GR, Hayward SW, Wang YZ. Role of stroma in carcinogenesis of the prostate. Differentiation. 2002;70(9–10):473–85.PubMedCrossRefGoogle Scholar
  18. 18.
    Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 1999;59(19):5002–11.PubMedGoogle Scholar
  19. 19.
    Tarin D. Role of the host stroma in cancer and its therapeutic significance. Cancer Metastasis Rev. 2013;32(3–4):553–66.PubMedCrossRefGoogle Scholar
  20. 20.
    Ayala GE, Muezzinoglu B, Hammerich KH, Frolov A, Liu H, Scardino PT, et al. Determining prostate cancer-specific death through quantification of stromogenic carcinoma area in prostatectomy specimens. Am J Pathol. 2011;178(1):79–87.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Chang SM, Chung LW. Interaction between prostatic fibroblast and epithelial cells in culture: role of androgen. Endocrinology. 1989;125(5):2719–27.PubMedCrossRefGoogle Scholar
  22. 22.
    Weina K, Utikal J. SOX2 and cancer: current research and its implications in the clinic. Clin Transl Med. 2014;3:19.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Djakiew D. Role of nerve growth factor-like protein in the paracrine regulation of prostate growth. J Androl. 1992;13(6):476–87.PubMedGoogle Scholar
  24. 24.
    Joesting MS, Perrin S, Elenbaas B, Fawell SE, Rubin JS, Franco OE, et al. Identification of SFRP1 as a candidate mediator of stromal-to-epithelial signaling in prostate cancer. Cancer Res. 2005;65(22):10423–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Blanchere M, Saunier E, Mestayer C, Broshuis M, Mowszowicz I. Alterations of expression and regulation of transforming growth factor beta in human cancer prostate cell lines. J Steroid Biochem Mol Biol. 2002;82(4–5):297–304.PubMedCrossRefGoogle Scholar
  26. 26.
    van Moorselaar RJ, Voest EE. Angiogenesis in prostate cancer: its role in disease progression and possible therapeutic approaches. Mol Cell Endocrinol. 2002;197(1–2):239–50.PubMedCrossRefGoogle Scholar
  27. 27.
    Royuela M, Ricote M, Parsons MS, Garcia-Tunon I, Paniagua R, de Miguel MP. Immunohistochemical analysis of the IL-6 family of cytokines and their receptors in benign, hyperplasic, and malignant human prostate. J Pathol. 2004;202(1):41–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Baron VT, Pio R, Jia Z, Mercola D. Early Growth Response 3 regulates genes of inflammation and directly activates IL6 and IL8 expression in prostate cancer. Br J Cancer. 2015;112(4):755–64.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lail-Trecker M, Gulati R, Peluso JJ. A role for hepatocyte growth factor/scatter factor in regulating normal and neoplastic cells of reproductive tissues. J Soc Gynecol Investig. 1998;5(3):114–21.PubMedGoogle Scholar
  30. 30.
    Djavan B, Waldert M, Seitz C, Marberger M. Insulin-like growth factors and prostate cancer. World J Urol. 2001;19(4):225–33.PubMedCrossRefGoogle Scholar
  31. 31.
    Planz B, Oltean H, Deix T, Kirley SD, Wang QF, McDougal WS, et al. Effect of keratinocyte growth factor and activin on cell growth in the human prostatic cancer cell line LNCaP. World J Urol. 2004;22(2):140–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Dijksterhuis JP, Petersen J, Schulte G. WNT/Frizzled signalling: receptor-ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR Review 3. Br J Pharmacol. 2014;171(5):1195–209.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Hayward SW, Wang Y, Cao M, Hom YK, Zhang B, Grossfeld GD, et al. Malignant transformation in a nontumorigenic human prostatic epithelial cell line. Cancer Res. 2001;61(22):8135–42.PubMedGoogle Scholar
  34. 34.
    Cunha GR, Hayward SW, Wang YZ, Ricke WA. Role of the stromal microenvironment in carcinogenesis of the prostate. Int J Cancer. 2003;107(1):1–10.PubMedCrossRefGoogle Scholar
  35. 35.
    Levine HA, Pamuk S, Sleeman BD, Nilsen-Hamilton M. Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull Math Biol. 2001;63(5):801–63.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang YT, Lander AD, Nie Q. Computational analysis of BMP gradients in dorsal-ventral patterning of the zebrafish embryo. J Theor Biol. 2007;248(4):579–89.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Walenta S, Snyder S, Haroon ZA, Braun RD, Amin K, Brizel D, et al. Tissue gradients of energy metabolites mirror oxygen tension gradients in a rat mammary carcinoma model. Int J Radiat Oncol Biol Phys. 2001;51(3):840–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Sluka P, Davis ID. Cell mates: paracrine and stromal targets for prostate cancer therapy. Nat Rev Urol. 2013;10(8):441–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang Q, Yu N, Lee C. Mysteries of TGF-beta paradox in benign and malignant cells. Front Oncol. 2014;4:94.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004;303(5659):848–51.PubMedCrossRefGoogle Scholar
  41. 41.
    Franco OE, Jiang M, Strand DW, Peacock J, Fernandez S, Jackson RS II, et al. Altered TGF-beta signaling in a subpopulation of human stromal cells promotes prostatic carcinogenesis. Cancer Res. 2011;71(4):1272–81.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ao M, Franco OE, Park D, Raman D, Williams K, Hayward SW. Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Res. 2007;67(9):4244–53.PubMedCrossRefGoogle Scholar
  43. 43.
    Kawada M, Inoue H, Usami I, Ikeda D. Phthoxazolin A inhibits prostate cancer growth by modulating tumor-stromal cell interactions. Cancer Sci. 2009;100(1):150–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Placencio VR, Sharif-Afshar AR, Li X, Huang H, Uwamariya C, Neilson EG, et al. Stromal transforming growth factor-beta signaling mediates prostatic response to androgen ablation by paracrine Wnt activity. Cancer Res. 2008;68(12):4709–18.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Li X, Placencio V, Iturregui JM, Uwamariya C, Sharif-Afshar AR, Koyama T, et al. Prostate tumor progression is mediated by a paracrine TGF-beta/Wnt3a signaling axis. Oncogene. 2008;27(56):7118–30.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zong Y, Huang J, Sankarasharma D, Morikawa T, Fukayama M, Epstein JI, et al. Stromal epigenetic dysregulation is sufficient to initiate mouse prostate cancer via paracrine Wnt signaling. Proc Natl Acad Sci U S A. 2012;109(50):E3395–404.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Ghahary A, Shen YJ, Wang R, Scott PG, Tredget EE. Expression and localization of insulin-like growth factor-1 in normal and post-burn hypertrophic scar tissue in human. Mol Cell Biochem. 1998;183(1–2):1–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Wang YZ, Wong YC. Sex hormone-induced prostatic carcinogenesis in the noble rat: the role of insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in the development of prostate cancer. Prostate. 1998;35(3):165–77.PubMedCrossRefGoogle Scholar
  49. 49.
    Banerjee J, Mishra R, Li X, Jackson RS II, Sharma A, Bhowmick NA. A reciprocal role of prostate cancer on stromal DNA damage. Oncogene. 2014;22:4924–31.CrossRefGoogle Scholar
  50. 50.
    Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6(5):963–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Dotto GP. Multifocal epithelial tumors and field cancerization: stroma as a primary determinant. J Clin Invest. 2014;124(4):1446–53.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Haaland CM, Heaphy CM, Butler KS, Fischer EG, Griffith JK, Bisoffi M. Differential gene expression in tumor adjacent histologically normal prostatic tissue indicates field cancerization. Int J Oncol. 2009;35(3):537–46.PubMedGoogle Scholar
  53. 53.
    Jones AC, Trujillo KA, Phillips GK, Fleet TM, Murton JK, Severns V, et al. Early growth response 1 and fatty acid synthase expression is altered in tumor adjacent prostate tissue and indicates field cancerization. Prostate. 2012;72(11):1159–70.PubMedCrossRefGoogle Scholar
  54. 54.
    Gabriel KN, Jones AC, Nguyen JP, Antillon KS, Janos SN, Overton HN, et al. Association and regulation of protein factors of field effect in prostate tissues. Int J Oncol. 2016;49(4):1541–52.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Jones AC, Antillon KS, Jenkins SM, Janos SN, Overton HN, Shoshan DS, et al. Prostate field cancerization: deregulated expression of macrophage inhibitory cytokine 1 (MIC-1) and platelet derived growth factor A (PDGF-A) in tumor adjacent tissue. PLoS One. 2015;10(3):e0119314.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Barron DA, Rowley DR. The reactive stroma microenvironment and prostate cancer progression. Endocr Relat Cancer. 2012;19(6):R187–204.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Saeter T, Vlatkovic L, Waaler G, Servoll E, Nesland JM, Axcrona K, et al. The prognostic value of reactive stroma on prostate needle biopsy: a population-based study. Prostate. 2015;75(6):662–71.PubMedCrossRefGoogle Scholar
  58. 58.
    Ittmann M, Huang J, Radaelli E, Martin P, Signoretti S, Sullivan R, et al. Animal models of human prostate cancer: the consensus report of the New York meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee. Cancer Res. 2013;73(9):2718–36.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Giri D, Ropiquet F, Ittmann M. Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clin Cancer Res. 1999;5(5):1063–71.PubMedGoogle Scholar
  60. 60.
    Dakhova O, Ozen M, Creighton CJ, Li R, Ayala G, Rowley D, et al. Global gene expression analysis of reactive stroma in prostate cancer. Clin Cancer Res. 2009;15(12):3979–89.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Nelson WG, De Marzo AM, Yegnasubramanian S. Epigenetic alterations in human prostate cancers. Endocrinology. 2009;150(9):3991–4002.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Montironi R, Diamanti L, Pomante R, Thompson D, Bartels PH. Subtle changes in benign tissue adjacent to prostate neoplasia detected with a Bayesian belief network. J Pathol. 1997;182(4):442–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Risk MC, Knudsen BS, Coleman I, Dumpit RF, Kristal AR, LeMeur N, et al. Differential gene expression in benign prostate epithelium of men with and without prostate cancer: evidence for a prostate cancer field effect. Clin Cancer Res. 2010;16(22):5414–23.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Trock BJ, Brotzman MJ, Mangold LA, Bigley JW, Epstein JI, McLeod D, et al. Evaluation of GSTP1 and APC methylation as indicators for repeat biopsy in a high-risk cohort of men with negative initial prostate biopsies. BJU Int. 2012;110(1):56–62.PubMedCrossRefGoogle Scholar
  65. 65.
    Waterhouse Rea. ConfirmMDX improves prostate cancer diagnosis in African American Men. Annual Meeting of the American Urology Association 2017; May 13, 2017; Boston, Massachusetts in the US: American Urology Association; 2017.Google Scholar
  66. 66.
    Maki J, Robinson K, Reguly B, Alexander J, Wittock R, Aguirre A, et al. Mitochondrial genome deletion aids in the identification of false- and true-negative prostate needle core biopsy specimens. Am J Clin Pathol. 2008;129(1):57–66.PubMedCrossRefGoogle Scholar
  67. 67.
    Robinson K, Creed J, Reguly B, Powell C, Wittock R, Klein D, et al. Accurate prediction of repeat prostate biopsy outcomes by a mitochondrial DNA deletion assay. Prostate Cancer Prostatic Dis. 2010;13(2):126–31.PubMedCrossRefGoogle Scholar
  68. 68.
    Jia Z, Wang Y, Sawyers A, Yao H, Rahmatpanah F, Xia XQ, et al. Diagnosis of prostate cancer using differentially expressed genes in stroma. Cancer Res. 2011;71(7):2476–87.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Parr RL, Mills J, Harbottle A, Creed JM, Crewdson G, Reguly B, et al. Mitochondria, prostate cancer, and biopsy sampling error. Discov Med. 2013;15(83):213–20.PubMedGoogle Scholar
  70. 70.
    Delongchamps NB, de la Roza G, Jones R, Jumbelic M, Haas GP. Saturation biopsies on autopsied prostates for detecting and characterizing prostate cancer. BJU Int. 2009;103(1):49–54.PubMedCrossRefGoogle Scholar
  71. 71.
    Jia Z, Rahmatpanah FB, Chen X, Lernhardt W, Wang Y, Xia XQ, et al. Expression changes in the stroma of prostate cancer predict subsequent relapse. PLoS One. 2012;7(8):e41371.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Vale CL, Burdett S, Rydzewska LH, Albiges L, Clarke NW, Fisher D, et al. Addition of docetaxel or bisphosphonates to standard of care in men with localised or metastatic, hormone-sensitive prostate cancer: a systematic review and meta-analyses of aggregate data. Lancet Oncol. 2016;17(2):243–56.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Globe ML, Tangen CM, Hussain M, Swanson GP, Wood DP, Sakr W, Dawson NA, Haas NB, Flaig TW, Dorff TB, Lin DW, David Crawford E, Quinn DI, Vogelzang NJ, Thompson IM. Adjuvant androgen deprivation (ADT) versus mitoxantrone plus prednisone (MP) plus ADT in high-risk prostate cancer (PCa) patients following radical prostatectomy: a phase III intergroup trial (SWOG S9921) NCT00004124. J Clin Oncol. 2017;35(Suppl. 6S):abstract 2.Google Scholar
  74. 74.
    Jia Z, Lilly MB, Koziol JA, Chen X, Xia XQ, Wang Y, et al. Generation of “virtual” control groups for single arm prostate cancer adjuvant trials. PLoS One. 2014;9(1):e85010.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Dorff TB, Flaig TW, Tangen CM, Hussain MH, Swanson GP, Wood DP Jr, et al. Adjuvant androgen deprivation for high-risk prostate cancer after radical prostatectomy: SWOG S9921 study. J Clin Oncol. 2011;29(15):2040–5.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Messing EM, Manola J, Sarosdy M, Wilding G, Crawford ED, Trump D. Immediate hormonal therapy compared with observation after radical prostatectomy and pelvic lymphadenectomy in men with node-positive prostate cancer. N Engl J Med. 1999;341(24):1781–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Hill R, Song Y, Cardiff RD, Van Dyke T. Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell. 2005;123(6):1001–11.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhu J, Pan C, Jiang J, Deng M, Gao H, Men B, et al. Six stroma-based RNA markers diagnostic for prostate cancer in European-Americans validated at the RNA and protein levels in patients in China. Oncotarget. 2015;6(18):16757–65.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Haffner MC, Mosbruger T, Esopi DM, Fedor H, Heaphy CM, Walker DA, et al. Tracking the clonal origin of lethal prostate cancer. J Clin Invest. 2013;123(11):4918–22.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Lindberg J, Kristiansen A, Wiklund P, Gronberg H, Egevad L. Tracking the origin of metastatic prostate cancer. Eur Urol. 2015;67(5):819–22.PubMedCrossRefGoogle Scholar
  81. 81.
    Boutros PC, Fraser M, Harding NJ, de Borja R, Trudel D, Lalonde E, et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat Genet. 2015;47(7):736–45.PubMedCrossRefGoogle Scholar
  82. 82.
    Fraser M, Sabelnykova VY, Yamaguchi TN, Heisler LE, Livingstone J, Huang V, et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature. 2017;541(7637):359–64.PubMedCrossRefGoogle Scholar
  83. 83.
    Chen X, Xu S, McClelland M, Rahmatpanah F, Sawyers A, Jia Z, et al. An accurate prostate cancer prognosticator using a seven-gene signature plus Gleason score and taking cell type heterogeneity into account. PLoS One. 2012;7(9):e45178.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Barbieri CE, Bangma CH, Bjartell A, Catto JW, Culig Z, Gronberg H, et al. The mutational landscape of prostate cancer. Eur Urol. 2013;64(4):567–76.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Campoli MR, Chang CC, Kageshita T, Wang X, McCarthy JB, Ferrone S. Human high molecular weight-melanoma-associated antigen (HMW-MAA): a melanoma cell surface chondroitin sulfate proteoglycan (MSCP) with biological and clinical significance. Crit Rev Immunol. 2004;24(4):267–96.PubMedCrossRefGoogle Scholar
  86. 86.
    Kekeeva TV, Popova OP, Shegai PV, Zavalishina LE, Andreeva I, Zaletaev DV, et al. [Frequent allelic losses in tumor-associated stromal cells and tumor epithelium of prostate cancer]. Mol Biol (Mosk). 2008;42(1):96–101.Google Scholar
  87. 87.
    Ashida S, Orloff MS, Bebek G, Zhang L, Zheng P, Peehl DM, et al. Integrated analysis reveals critical genomic regions in prostate tumor microenvironment associated with clinicopathologic phenotypes. Clin Cancer Res. 2012;18(6):1578–87.PubMedCrossRefGoogle Scholar
  88. 88.
    Bianchi-Frias D, Basom R, Delrow JJ, Coleman IM, Dakhova O, Qu X, et al. Cells comprising the prostate cancer microenvironment lack recurrent clonal somatic genomic aberrations. Mol Cancer Res. 2016;14(4):374–84.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Silva MM Jr, Matheus WE, Garcia PV, Stopiglia RM, Billis A, Ferreira U, et al. Characterization of reactive stroma in prostate cancer: involvement of growth factors, metalloproteinase matrix, sexual hormones receptors and prostatic stem cells. Int Braz J Urol. 2015;41(5):849–58.PubMedCrossRefGoogle Scholar
  90. 90.
    Gomez-Sarosi L, Sun Y, Coleman I, Bianchi-Frias D, Nelson PS. DNA damage induces a secretory program in the quiescent TME that fosters adverse cancer phenotypes. Mol Cancer Res. 2017;15(7):842–51.PubMedCrossRefGoogle Scholar
  91. 91.
    Shariat SF, Karakiewicz PI, Roehrborn CG, Kattan MW. An updated catalog of prostate cancer predictive tools. Cancer. 2008;113(11):3075–99.PubMedCrossRefGoogle Scholar
  92. 92.
    Thomsen FB, Brasso K, Klotz LH, Roder MA, Berg KD, Iversen P. Active surveillance for clinically localized prostate cancer—a systematic review. J Surg Oncol. 2014;109(8):830–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Masic S, Washington SL III, Carroll PR. Management of intermediate-risk prostate cancer with active surveillance: never or sometimes? Curr Opin Urol. 2017;27(3):231–7.PubMedCrossRefGoogle Scholar
  94. 94.
    James ND, Sydes MR, Clarke NW, Mason MD, Parmar MK. STAMPEDE trial and patients with non-metastatic prostate cancer – Authors’ reply. Lancet. 2016;388(10041):235–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Schweizer MT, Huang P, Kattan MW, Kibel AS, de Wit R, Sternberg CN, et al. Adjuvant leuprolide with or without docetaxel in patients with high-risk prostate cancer after radical prostatectomy (TAX-3501): important lessons for future trials. Cancer. 2013;119(20):3610–8.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kellokumpu-Lehtinen PL, Hjalm-Eriksson M, Thellenberg-Karlsson C, Astrom L, Franzen L, Marttila T, et al. Toxicity in patients receiving adjuvant docetaxel + hormonal treatment after radical radiotherapy for intermediate or high-risk prostate cancer: a preplanned safety report of the SPCG-13 trial. Prostate Cancer Prostatic Dis. 2012;15(3):303–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Dearnaley DP, Mason MD, Parmar MK, Sanders K, Sydes MR. Adjuvant therapy with oral sodium clodronate in locally advanced and metastatic prostate cancer: long-term overall survival results from the MRC PR04 and PR05 randomised controlled trials. Lancet Oncol. 2009;10(9):872–6.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Messing EM, Manola J, Yao J, Kiernan M, Crawford D, Wilding G, et al. Immediate versus deferred androgen deprivation treatment in patients with node-positive prostate cancer after radical prostatectomy and pelvic lymphadenectomy. Lancet Oncol. 2006;7(6):472–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Murphy AM, Berkman DS, Desai M, Benson MC, McKiernan JM, Badani KK. The number of negative pelvic lymph nodes removed does not affect the risk of biochemical failure after radical prostatectomy. BJU Int. 2010;105(2):176–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Yashi M, Mizuno T, Yuki H, Masuda A, Kambara T, Betsunoh H, et al. Prostate volume and biopsy tumor length are significant predictors for classical and redefined insignificant cancer on prostatectomy specimens in Japanese men with favorable pathologic features on biopsy. BMC Urol. 2014;14:43.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Petrelli F, Vavassori I, Coinu A, Borgonovo K, Sarti E, Barni S. Radical prostatectomy or radiotherapy in high-risk prostate cancer: a systematic review and metaanalysis. Clin Genitourin Cancer. 2014;12(4):215–24.PubMedCrossRefGoogle Scholar
  102. 102.
    Li F, Zhou X, Ma J, Wong ST. An automated feedback system with the hybrid model of scoring and classification for solving over-segmentation problems in RNAi high content screening. J Microsc. 2007;226(Pt 2):121–32.PubMedCrossRefGoogle Scholar
  103. 103.
    Kiskowski MA, Jackson RS II, Banerjee J, Li X, Kang M, Iturregui JM, et al. Role for stromal heterogeneity in prostate tumorigenesis. Cancer Res. 2011;71(10):3459–70.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Kinseth MA, Jia Z, Rahmatpanah F, Sawyers A, Sutton M, Wang-Rodriguez J, et al. Expression differences between African American and Caucasian prostate cancer tissue reveals that stroma is the site of aggressive changes. Int J Cancer. 2014;134(1):81–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Zhenyu Jia
    • 1
    • 2
  • Chung Lee
    • 1
    • 2
  • Xiaolin Zi
    • 3
  • Michael McClelland
    • 4
  • Dan Mercola
    • 1
    • 2
  1. 1.Department of Botany and Plant SciencesUniversity of CaliforaniaRiversideUSA
  2. 2.Department of Pathology and Laboratory MedicineUniversity of CaliforniaIrvineUSA
  3. 3.Department of UrologyUniversity of Calinfornia IrvineOrangeUSA
  4. 4.Department of Microbiology and Molecular GeneticsUniversity of California IrvineIrvineUSA

Personalised recommendations