Advertisement

Metabolomic-Based Stratification in Prostate Cancer

Chapter
Part of the Molecular Pathology Library book series (MPLB)

Abstract

Prostate cancer is a complex disease characterized by significant molecular heterogeneity and different clinical outcomes. Metabolic reprogramming is crucial for cancer cells to provide energy fuel and building blocks needed to sustain high proliferative rates and antagonize cell death signals. This chapter introduces some of the most common genetic alterations relevant to the pathogenesis of prostate cancer and proposes metabolomics as a tool to stratify this disease into molecularly and clinically diverse subtypes. The prevalent metabolic alterations in prostate cancer will be discussed with a particular focus on the link between driving oncogenes and cancer metabolism rewiring. In addition, we will tackle the potential use of metabolic profiling to predict disease behavior and to identify novel therapeutic targets and diagnostic tools.

Many different platforms are currently employed in the global assessment of metabolic changes, including but not limited to mass spectrometry (MS) and nuclear magnetic resonance (NMR). Current state-of-the-art techniques to study global metabolic alterations will be also described in this chapter.

Finally, we will discuss the feasibility to use metabolomics in formalin-fixed paraffin-embedded samples as an untapped opportunity to characterize patients with long-term follow-up.

Keywords

Prostate cancer Stratification Metabolomics NMR Mass spectrometry Oncogene FFPE 

References

  1. 1.
    Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403. PubMed PMID: 23485231.PubMedCrossRefGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. PubMed PMID: 28055103.Google Scholar
  3. 3.
    Al Olama AA, Kote-Jarai Z, Berndt SI, Conti DV, Schumacher F, Han Y, et al. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet. 2014;46(10):1103–9. PubMed PMID: 25217961. Pubmed Central PMCID: 4383163.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Brindle KM. Imaging metabolism with hyperpolarized (13)C-labeled cell substrates. J Am Chem Soc. 2015;137(20):6418–27. PubMed PMID: 25950268.PubMedCrossRefGoogle Scholar
  5. 5.
    Ukimura O, Desai MM, Palmer S, Valencerina S, Gross M, Abreu AL, et al. 3-Dimensional elastic registration system of prostate biopsy location by real-time 3-dimensional transrectal ultrasound guidance with magnetic resonance/transrectal ultrasound image fusion. J Urol. 2012;187(3):1080–6. PubMed PMID: 22266005.PubMedCrossRefGoogle Scholar
  6. 6.
    Penney KL, Stampfer MJ, Jahn JL, Sinnott JA, Flavin R, Rider JR, et al. Gleason grade progression is uncommon. Cancer Res. 2013;73(16):5163–8. PubMed PMID: 23946472. Pubmed Central PMCID: 3775342.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Armstrong CM, Gao AC. Drug resistance in castration resistant prostate cancer: resistance mechanisms and emerging treatment strategies. Am J Clin Exp Urol. 2015;3(2):64–76. PubMed PMID: 26309896. Pubmed Central PMCID: 4539108.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Chou R, Croswell JM, Dana T, Bougatsos C, Blazina I, Fu R, et al. Screening for prostate cancer: a review of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2011;155(11):762–71. PubMed PMID: 21984740.PubMedCrossRefGoogle Scholar
  9. 9.
    Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, et al. Punctuated evolution of prostate cancer genomes. Cell. 2013;153(3):666–77. PubMed PMID: 23622249. Pubmed Central PMCID: 3690918.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44(6):685–9. PubMed PMID: 22610119. Pubmed Central PMCID: 3673022.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, et al. The genomic complexity of primary human prostate cancer. Nature. 2011;470(7333):214–20. PubMed PMID: 21307934. Pubmed Central PMCID: 3075885.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lapointe J, Li C, Giacomini CP, Salari K, Huang S, Wang P, et al. Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis. Cancer Res. 2007;67(18):8504–10. PubMed PMID: 17875689.PubMedCrossRefGoogle Scholar
  13. 13.
    Pflueger D, Terry S, Sboner A, Habegger L, Esgueva R, Lin PC, et al. Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing. Genome Res. 2011;21(1):56–67. PubMed PMID: 21036922. Pubmed Central PMCID: 3012926.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11–22. PubMed PMID: 20579941. Pubmed Central PMCID: 3198787.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS, et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature. 2007;448(7153):595–9. PubMed PMID: 17671502.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang XS, Shankar S, Dhanasekaran SM, Ateeq B, Sasaki AT, Jing X, et al. Characterization of KRAS rearrangements in metastatic prostate cancer. Cancer Discov. 2011;1(1):35–43. PubMed PMID: 22140652. Pubmed Central PMCID: 3227139.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Mani RS, Tomlins SA, Callahan K, Ghosh A, Nyati MK, Varambally S, et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science. 2009;326(5957):1230. PubMed PMID: 19933109. Pubmed Central PMCID: 2935583.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Tomlins SA, Aubin SM, Siddiqui J, Lonigro RJ, Sefton-Miller L, Miick S, et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med. 2011;3(94):94ra72. PubMed PMID: 21813756. Pubmed Central PMCID: 3245713.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Demichelis F, Fall K, Perner S, Andren O, Schmidt F, Setlur SR, et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene. 2007;26(31):4596–9. PubMed PMID: 17237811.PubMedCrossRefGoogle Scholar
  20. 20.
    Gopalan A, Leversha MA, Satagopan JM, Zhou Q, Al-Ahmadie HA, Fine SW, et al. TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res. 2009;69(4):1400–6. PubMed PMID: 19190343. Pubmed Central PMCID: 3676271.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Pettersson A, Graff RE, Bauer SR, Pitt MJ, Lis RT, Stack EC, et al. The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis. Cancer Epidemiol Biomark Prevent. 2012;21(9):1497–509. PubMed PMID: 22736790. Pubmed Central PMCID: 3671609.CrossRefGoogle Scholar
  22. 22.
    Hieronymus H, Schultz N, Gopalan A, Carver BS, Chang MT, Xiao Y, et al. Copy number alteration burden predicts prostate cancer relapse. Proc Natl Acad Sci U S A. 2014;111(30):11139–44. PubMed PMID: 25024180. Pubmed Central PMCID: 4121784.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lalonde E, Ishkanian AS, Sykes J, Fraser M, Ross-Adams H, Erho N, et al. Tumour genomic and microenvironmental heterogeneity for integrated prediction of 5-year biochemical recurrence of prostate cancer: a retrospective cohort study. Lancet Oncol. 2014;15(13):1521–32. PubMed PMID: 25456371.PubMedCrossRefGoogle Scholar
  24. 24.
    Cooper CS, Eeles R, Wedge DC, Van Loo P, Gundem G, Alexandrov LB, et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet. 2015;47(4):367–72. PubMed PMID: 25730763. Pubmed Central PMCID: 4380509.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215–28. PubMed PMID: 26000489. Pubmed Central PMCID: 4484602.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Schultz N, et al. Network TCGAR. The molecular taxonomy of primary prostate cancer. Cell. 2015;163:1011. Pubmed PMID: 26544944. Pubmed Central PMCID: 4695400.Google Scholar
  27. 27.
    Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK, et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med. 1995;332(21):1393–8. PubMed PMID: 7723794.PubMedCrossRefGoogle Scholar
  28. 28.
    Beltran H, Yelensky R, Frampton GM, Park K, Downing SR, MacDonald TY, et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol. 2013;63(5):920–6. PubMed PMID: 22981675. Pubmed Central PMCID: 3615043.PubMedCrossRefGoogle Scholar
  29. 29.
    Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487(7406):239–43. PubMed PMID: 22722839. Pubmed Central PMCID: 3396711.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JM, Papaemmanuil E, et al. The evolutionary history of lethal metastatic prostate cancer. Nature. 2015;520(7547):353–7. PubMed PMID: 25830880. Pubmed Central PMCID: 4413032.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Penney KL, Sinnott JA, Fall K, Pawitan Y, Hoshida Y, Kraft P, et al. mRNA expression signature of Gleason grade predicts lethal prostate cancer. J Clin Oncol. 2011;29(17):2391–6. PubMed PMID: 21537050. Pubmed Central PMCID: 3107753.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Pin E, Fredolini C, Petricoin EF III. The role of proteomics in prostate cancer research: biomarker discovery and validation. Clin Biochem. 2013;46(6):524–38. PubMed PMID: 23266295.PubMedCrossRefGoogle Scholar
  33. 33.
    Shipitsin M, Small C, Choudhury S, Giladi E, Friedlander S, Nardone J, et al. Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error. Br J Cancer. 2014;111(6):1201–12. PubMed PMID: 25032733. Pubmed Central PMCID: 4453845.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    International Human Genome Sequencing C. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45. PubMed PMID: 15496913.CrossRefGoogle Scholar
  35. 35.
    Wild CP. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev. 2005;14(8):1847–50. PubMed PMID: 16103423.PubMedCrossRefGoogle Scholar
  36. 36.
    Labbe DP, Zadra G, Ebot EM, Mucci LA, Kantoff PW, Loda M, et al. Role of diet in prostate cancer: the epigenetic link. Oncogene. 2015;34:4683. PubMed PMID: 25531313. Pubmed Central PMCID: 4476943.PubMedCrossRefGoogle Scholar
  37. 37.
    Zadra G, Priolo C, Patnaik A, Loda M. New strategies in prostate cancer: targeting lipogenic pathways and the energy sensor AMPK. Clin Cancer Res. 2010;16(13):3322–8. PubMed PMID: 20423984. Pubmed Central PMCID: 3176306.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Giovannucci E, Liu Y, Platz EA, Stampfer MJ, Willett WC. Risk factors for prostate cancer incidence and progression in the health professionals follow-up study. Int J Cancer. 2007;121(7):1571–8. PubMed PMID: 17450530. Pubmed Central PMCID: 2430098.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ma J, Li H, Giovannucci E, Mucci L, Qiu W, Nguyen PL, et al. Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis. Lancet Oncol. 2008;9(11):1039–47. PubMed PMID: 18835745. Pubmed Central PMCID: 2651222.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Discacciati A, Orsini N, Wolk A. Body mass index and incidence of localized and advanced prostate cancer--a dose-response meta-analysis of prospective studies. Annals Oncol. 2012;23(7):1665–71. PubMed PMID: 22228452.CrossRefGoogle Scholar
  41. 41.
    World Cancer Research Fund International/American Institute for Cancer Research. Continuous update project report: diet, nutrition, physical activity, and prostate cancer. www.wcrf.org/sites/default/files/Prostate-Cancer-2014-Report.pdf2014.
  42. 42.
    Zadra G, Photopoulos C, Loda M. The fat side of prostate cancer. Biochim Biophys Acta. 2013;1831(10):1518–32. PubMed PMID: 23562839. Pubmed Central PMCID: 3766375.Google Scholar
  43. 43.
    Zadra G, Batista JL, Loda M. Dissecting the dual role of AMPK in cancer: from experimental to human studies. Mol Cancer Res. 2015;13(7):1059–72. PubMed PMID: 25956158. Pubmed Central PMCID: PMC4504770.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Margel D, Urbach DR, Lipscombe LL, Bell CM, Kulkarni G, Austin PC, et al. Metformin use and all-cause and prostate cancer-specific mortality among men with diabetes. J Clin Oncol. 2013;31(25):3069–75. PubMed PMID: 23918942.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167–74. PubMed PMID: 11602624. Pubmed Central PMCID: 209533.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Marshall E. Metabolic research. Canadian group claims ‘unique’ database. Science. 2007;315(5812):583–4. PubMed PMID: 17272691.PubMedCrossRefGoogle Scholar
  47. 47.
    Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0--the Human Metabolome Database in 2013. Nucleic Acids Res. 2013;41(Database issue):D801–7. PubMed PMID: 23161693. Pubmed Central PMCID: 3531200.PubMedGoogle Scholar
  48. 48.
    Dunn WB, Bailey NJ, Johnson HE. Measuring the metabolome: current analytical technologies. Analyst. 2005;130(5):606–25. PubMed PMID: 15852128.PubMedCrossRefGoogle Scholar
  49. 49.
    Cacciatore S, Luchinat C, Tenori L. Knowledge discovery by accuracy maximization. Proc Natl Acad Sci U S A. 2014;111(14):5117–22. PubMed PMID: 24706821. Pubmed Central PMCID: 3986136.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Cacciatore S, Tenori L, Luchinat C, Bennett PR, MacIntyre DA. KODAMA: an R package for knowledge discovery and data mining. Bioinformatics. 2017;33(4):621–3. PubMed PMID: 27993774.PubMedGoogle Scholar
  51. 51.
    Kind T, Fiehn O. Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics. 2006;7:234. PubMed PMID: 16646969. Pubmed Central PMCID: 1464138.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    McKenna AM, Williams JT, Putman JC, Aeppli C, Reddy CM, Valentine DL, et al. Unprecedented Ultrahigh Resolution FT-ICR Mass Spectrometry and Parts-Per-Billion Mass Accuracy Enable Direct Characterization of Nickel and Vanadyl Porphyrins in Petroleum from Natural Seeps. Energy Fuel. 2014;28(4):2454–64.CrossRefGoogle Scholar
  53. 53.
    Fung EN, Yeung ES. Direct analysis of single rat peritoneal mast cells with laser vaporization/ionization mass spectrometry. Anal Chem. 1998;70(15):3206–12. PubMed PMID: 11013722.PubMedCrossRefGoogle Scholar
  54. 54.
    Levine JH, Simonds EF, Bendall SC, Davis KL, Amir el AD, Tadmor MD, et al. Data-driven phenotypic dissection of AML reveals progenitorlike cells that correlate with prognosis. Cell. 2015;162(1):184–97. PubMed PMID: 26095251. Pubmed Central PMCID: 4508757.Google Scholar
  55. 55.
    Lujan E, Zunder ER, Ng YH, Goronzy IN, Nolan GP, Wernig M. Early reprogramming regulators identified by prospective isolation and mass cytometry. Nature. 2015;521(7552):352–6. PubMed PMID: 25830878. Pubmed Central PMCID: 4441548.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Zunder ER, Lujan E, Goltsev Y, Wernig M, Nolan GP. A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. Cell Stem Cell. 2015;16(3):323–37. PubMed PMID: 25748935. Pubmed Central PMCID: 4401090.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Takats Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306(5695):471–3. PubMed PMID: 15486296.PubMedCrossRefGoogle Scholar
  58. 58.
    Greving MP, Patti GJ, Siuzdak G. Nanostructure-initiator mass spectrometry metabolite analysis and imaging. Anal Chem. 2011;83(1):2–7. PubMed PMID: 21049956. Pubmed Central PMCID: 3012143.PubMedCrossRefGoogle Scholar
  59. 59.
    Kettunen J, Tukiainen T, Sarin AP, Ortega-Alonso A, Tikkanen E, Lyytikainen LP, et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat Genet. 2012;44(3):269–76. PubMed PMID: 22286219. Pubmed Central PMCID:3605033.Google Scholar
  60. 60.
    Beckonert O, Coen M, Keun HC, Wang Y, Ebbels TM, Holmes E, et al. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc. 2010;5(6):1019–32. PubMed PMID: 20539278.PubMedCrossRefGoogle Scholar
  61. 61.
    Cacciatore S, Hu X, Viertler C, Kap M, Bernhardt GA, Mischinger HJ, et al. Effects of intra- and post-operative ischemia on the metabolic profile of clinical liver tissue specimens monitored by NMR. J Proteome Res. 2013;12(12):5723–9. PubMed PMID: 24124761.PubMedCrossRefGoogle Scholar
  62. 62.
    Bhavsar A, Verma S. Anatomic Imaging of the Prostate. Biomed Res Int. 2014;2014:728539. PubMed PMID: 25243174. Pubmed Central PMCID: 4160650.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Wu CL, Jordan KW, Ratai EM, Sheng J, Adkins CB, Defeo EM, et al. Metabolomic imaging for human prostate cancer detection. Sci Transl Med. 2010;2(16):16ra8. PubMed PMID: 20371475. Pubmed Central PMCID: 2857699.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Bock JL. Metabolic profiling of amniotic fluid by proton nuclear magnetic resonance spectroscopy: correlation with fetal maturation and other clinical variables. Clin Chem. 1994;40(1):56–61. PubMed PMID: 8287545.PubMedGoogle Scholar
  65. 65.
    Day SE, Kettunen MI, Gallagher FA, D-E H, Lerche M, Wolber J, et al. Detecting tumour response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med. 2007;13:1382–7. Pubmed PMID: 17965722.Google Scholar
  66. 66.
    Rodrigues TB, Serrao EM, Kennedy BWC, Hu D, Kettunen MI, Brindle KM. Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C labeled glucose. Nat Med. 2014;20:93–7. Pubmed PMID: 24317119. Pubmed Central PMCID: 3886895.Google Scholar
  67. 67.
    Witney TH, Kettunen MI, DE H, Gallagher FA, Bohndiek SE, Napolitano R, et al. Detecting treatment response in a model of human breast adenocarcinoma using hyperpolarised [1-13C]pyruvate and [1,4-13C2]fumarate. Br J Cancer. 2010;103(9):1400–6. PubMed PMID: 20924379. Pubmed Central PMCID: 2990617.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Gallagher FA, Kettunen MI, Hu DE, Jensen PR, Zandt RI, Karlsson M, et al. Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. Proc Natl Acad Sci U S A. 2009;106(47):19801–6. PubMed PMID: 19903889. Pubmed Central PMCID: 2785247.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Gallagher FA, Kettunen MI, Day SE, D-E H, Ardenkjær-Larsen JH, in‘t Zandt R, et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labeled bicarbonate. Nature. 2008;453:940–3. Pubmed PMID: 20641986.Google Scholar
  70. 70.
    Bohndiek SE, Kettunen MI, Hu D, Kennedy BWC, Boren J, Gallagher FA, et al. Hyperpolarized [1-13C]-ascorbic and dehydroascorbic acid: vitamin C as a probe for imaging redox status in vivo. J Am Chem Soc. 2011;133:11795–801. Pubmed PMID: 21692446. Pubmed Central PMCID: 3144679.Google Scholar
  71. 71.
    Warburg O. On respiratory impairment in cancer cells. Science. 1956;124(3215):269–70. PubMed PMID: 13351639.PubMedGoogle Scholar
  72. 72.
    Shaw RJ. Glucose metabolism and cancer. Curr Opin Cell Biol. 2006;18(6):598–608. PubMed PMID: 17046224.PubMedCrossRefGoogle Scholar
  73. 73.
    Priolo C, Pyne S, Rose J, Regan ER, Zadra G, Photopoulos C, et al. AKT1 and MYC induce distinctive metabolic fingerprints in human prostate cancer. Cancer Res. 2014;74:7198. PubMed PMID: 25322691.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Rathmell JC, Elstrom RL, Cinalli RM, Thompson CB. Activated Akt promotes increased resting T cell size, CD28-independent T cell growth, and development of autoimmunity and lymphoma. Eur J Immunol. 2003;33(8):2223–32. PubMed PMID: 12884297.PubMedCrossRefGoogle Scholar
  75. 75.
    Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol. 2003;23(20):7315–28. PubMed PMID: 14517300. Pubmed Central PMCID: 230333.Google Scholar
  76. 76.
    Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 2004;64(11):3892–9. PubMed PMID: 15172999.PubMedCrossRefGoogle Scholar
  77. 77.
    Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med. 2004;10(6):594–601. PubMed PMID: 15156201.PubMedCrossRefGoogle Scholar
  78. 78.
    Costello LC, Lao L, Franklin R. Citrate modulation of high-affinity aspartate transport in prostate epithelial cells. Cell Mol Biol. 1993;39(5):515–24. PubMed PMID: 8104067.PubMedGoogle Scholar
  79. 79.
    Lao L, Franklin RB, Costello LC. High-affinity L-aspartate transporter in prostate epithelial cells that is regulated by testosterone. Prostate. 1993;22(1):53–63. PubMed PMID: 8426838.PubMedCrossRefGoogle Scholar
  80. 80.
    Averna TA, Kline EE, Smith AY, Sillerud LO. A decrease in 1H nuclear magnetic resonance spectroscopically determined citrate in human seminal fluid accompanies the development of prostate adenocarcinoma. J Urol. 2005;173(2):433–8. PubMed PMID: 15643195.PubMedCrossRefGoogle Scholar
  81. 81.
    Serkova NJ, Gamito EJ, Jones RH, O’Donnell C, Brown JL, Green S, et al. The metabolites citrate, myo-inositol, and spermine are potential age-independent markers of prostate cancer in human expressed prostatic secretions. Prostate. 2008;68(6):620–8. PubMed PMID: 18213632.PubMedCrossRefGoogle Scholar
  82. 82.
    Kurhanewicz J, Vigneron DB, Nelson SJ, Hricak H, MacDonald JM, Konety B, et al. Citrate as an in vivo marker to discriminate prostate cancer from benign prostatic hyperplasia and normal prostate peripheral zone: detection via localized proton spectroscopy. Urology. 1995;45(3):459–66. PubMed PMID: 7533458.PubMedCrossRefGoogle Scholar
  83. 83.
    Giskeodegard GF, Bertilsson H, Selnaes KM, Wright AJ, Bathen TF, Viset T, et al. Spermine and citrate as metabolic biomarkers for assessing prostate cancer aggressiveness. PLoS One. 2013;8(4):e62375. PubMed PMID: 23626811. Pubmed Central PMCID: 3633894.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Selnaes KM, Gribbestad IS, Bertilsson H, Wright A, Angelsen A, Heerschap A, et al. Spatially matched in vivo and ex vivo MR metabolic profiles of prostate cancer -- investigation of a correlation with Gleason score. NMR Biomed. 2013;26(5):600–6. PubMed PMID: 23280546.PubMedCrossRefGoogle Scholar
  85. 85.
    Nagarajan R, Margolis D, Raman S, Sheng K, King C, Reiter R, et al. Correlation of Gleason scores with diffusion-weighted imaging findings of prostate cancer. Adv Urol. 2012;2012:374805. PubMed PMID: 22216026. Pubmed Central PMCID: 3246296.PubMedCrossRefGoogle Scholar
  86. 86.
    Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PE, Harzstark AL, Ferrone M, et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(1)(3)C]pyruvate. Sci Transl Med. 2013;5(198):198ra08. PubMed PMID: 23946197. Pubmed Central PMCID: 4201045.CrossRefGoogle Scholar
  87. 87.
    Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457(7231):910–4. PubMed PMID: 19212411. Pubmed Central PMCID: 2724746.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Meyer TE, Fox SD, Issaq HJ, Xu X, Chu LW, Veenstra TD, et al. A reproducible and high-throughput HPLC/MS method to separate sarcosine from alpha- and beta-alanine and to quantify sarcosine in human serum and urine. Anal Chem. 2011;83(14):5735–40. PubMed PMID: 21635006.PubMedCrossRefGoogle Scholar
  89. 89.
    Khan AP, Rajendiran TM, Ateeq B, Asangani IA, Athanikar JN, Yocum AK, et al. The role of sarcosine metabolism in prostate cancer progression. Neoplasia. 2013;15(5):491–501. PubMed PMID: 23633921. Pubmed Central PMCID: 3638352.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Rossi S, Graner E, Febbo P, Weinstein L, Bhattacharya N, Onody T, et al. Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Mol Cancer Res. 2003;1(10):707–15. PubMed PMID: 12939396.PubMedGoogle Scholar
  91. 91.
    Liu Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis. 2006;9:230–4. Pubmed PMID: 16683009.Google Scholar
  92. 92.
    Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer. 2013;13(4):227–32. PubMed PMID: 23446547. Pubmed Central PMCID: 3766957.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Chandler JD, Williams ED, Slavin JL, Best JD, Rogers S. Expression and localization of GLUT1 and GLUT12 in prostate carcinoma. Cancer. 2003;97(8):2035–42. PubMed PMID: 12673735.PubMedCrossRefGoogle Scholar
  94. 94.
    Luo JH, YP Y, Cieply K, Lin F, Deflavia P, Dhir R, et al. Gene expression analysis of prostate cancers. Mol Carcinog. 2002;33(1):25–35. PubMed PMID: 11807955.PubMedCrossRefGoogle Scholar
  95. 95.
    Zha S, Ferdinandusse S, Hicks JL, Denis S, Dunn TA, Wanders RJ, et al. Peroxisomal branched chain fatty acid beta-oxidation pathway is upregulated in prostate cancer. Prostate. 2005;63(4):316–23. PubMed PMID: 15599942.PubMedCrossRefGoogle Scholar
  96. 96.
    Flavin R, Peluso S, Nguyen PL, Loda M. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol. 2010;6(4):551–62. PubMed PMID: 20373869. Pubmed Central PMCID: 3197858.Google Scholar
  97. 97.
    Baron A, Migita T, Tang D, Loda M. Fatty acid synthase: a metabolic oncogene in prostate cancer? J Cell Biochem. 2004;91(1):47–53. PubMed PMID: 14689581.PubMedCrossRefGoogle Scholar
  98. 98.
    Migita T, Ruiz S, Fornari A, Fiorentino M, Priolo C, Zadra G, et al. Fatty acid synthase: a metabolic enzyme and candidate oncogene in prostate cancer. J Natl Cancer Inst. 2009;101(7):519–32. PubMed PMID: 19318631. Pubmed Central PMCID: 2664091.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Epstein JI, Carmichael M, Partin AW. OA-519 (fatty acid synthase) as an independent predictor of pathologic state in adenocarcinoma of the prostate. Urology. 1995;45(1):81–6. PubMed PMID: 7817483.PubMedCrossRefGoogle Scholar
  100. 100.
    Scaglia N, Tyekucheva S, Zadra G, Photopoulos C, Loda M. De novo fatty acid synthesis at the mitotic exit is required to complete cellular division. Cell Cycle. 2014;13(5):859–68. PubMed PMID: 24418822. Pubmed Central PMCID: 3979921.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    O’Brien AJ, Villani LA, Broadfield LA, Houde VP, Galic S, Blandino G, et al. Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells ex vivo through inhibition of de novo lipogenesis. Biochem J. 2015;469(2):177–87. PubMed PMID: 25940306.PubMedCrossRefGoogle Scholar
  102. 102.
    Sadowski MC, Pouwer RH, Gunter JH, Lubik AA, Quinn RJ, Nelson CC. The fatty acid synthase inhibitor triclosan: repurposing an antimicrobial agent for targeting prostate cancer. Oncotarget. 2014;5(19):9362–81. PubMed PMID: 25313139. Pubmed Central PMCID: 4253440.Google Scholar
  103. 103.
    Ventura R, Mordec K, Waszczuk J, Wang Z, Lai J, Fridlib M, et al. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine. 2015;2(8):806–22. PubMed PMID: 26425687. Pubmed Central PMCID: 4563160.CrossRefGoogle Scholar
  104. 104.
    Zhou X, Mao J, Ai J, Deng Y, Roth MR, Pound C, et al. Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics. PLoS One. 2012;7(11):e48889. PubMed PMID: 23152813. Pubmed Central PMCID: 3495963.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Ramirez de Molina A, Gutierrez R, Ramos MA, Silva JM, Silva J, Bonilla F, et al. Increased choline kinase activity in human breast carcinomas: clinical evidence for a potential novel antitumor strategy. Oncogene. 2002;21(27):4317–22. PubMed PMID: 12082619.PubMedCrossRefGoogle Scholar
  106. 106.
    Ramirez de Molina A, Rodriguez-Gonzalez A, Gutierrez R, Martinez-Pineiro L, Sanchez J, Bonilla F, et al. Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun. 2002;296(3):580–3. PubMed PMID: 12176020.PubMedCrossRefGoogle Scholar
  107. 107.
    Iorio E, Ricci A, Bagnoli M, Pisanu ME, Castellano G, Di Vito M, et al. Activation of phosphatidylcholine cycle enzymes in human epithelial ovarian cancer cells. Cancer Res. 2010;70(5):2126–35. PubMed PMID: 20179205. Pubmed Central PMCID: 2831129.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Gallego-Ortega D, Ramirez de Molina A, Ramos MA, Valdes-Mora F, Barderas MG, Sarmentero-Estrada J, et al. Differential role of human choline kinase alpha and beta enzymes in lipid metabolism: implications in cancer onset and treatment. PLoS One. 2009;4(11):e7819. PubMed PMID: 19915674. Pubmed Central PMCID: 2773002.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Ramirez de Molina A, Gallego-Ortega D, Sarmentero J, Banez-Coronel M, Martin-Cantalejo Y, Lacal JC. Choline kinase is a novel oncogene that potentiates RhoA-induced carcinogenesis. Cancer Res. 2005;65(13):5647–53. PubMed PMID: 15994937.PubMedCrossRefGoogle Scholar
  110. 110.
    Swanson MG, Vigneron DB, Tabatabai ZL, Males RG, Schmitt L, Carroll PR, et al. Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues. Magn Reson Med. 2003;50(5):944–54. PubMed PMID: 14587005.PubMedCrossRefGoogle Scholar
  111. 111.
    Swanson MG, Keshari KR, Tabatabai ZL, Simko JP, Shinohara K, Carroll PR, et al. Quantification of choline- and ethanolamine-containing metabolites in human prostate tissues using 1H HR-MAS total correlation spectroscopy. Magn Reson Med. 2008;60(1):33–40. PubMed PMID: 18581409. Pubmed Central PMCID: 2643975.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Keshari KR, Tsachres H, Iman R, Delos Santos L, Tabatabai ZL, Shinohara K, et al. Correlation of phospholipid metabolites with prostate cancer pathologic grade, proliferative status and surgical stage-impact of tissue environment. NMR Biomed. 2011;24(6):691–9. PubMed PMID: 21793074. Pubmed Central PMCID: 3653775.Google Scholar
  113. 113.
    Holzbeierlein J, Lal P, LaTulippe E, Smith A, Satagopan J, Zhang L, et al. Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol. 2004;164(1):217–27. PubMed PMID: 14695335. Pubmed Central PMCID: 1602218.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Mostaghel EA. Steroid hormone synthetic pathways in prostate cancer. Transl Androl Urol. 2013;2(3):212–27. PubMed PMID: 25379460. Pubmed Central PMCID: 4219921.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Freeman MR, Solomon KR. Cholesterol and prostate cancer. J Cell Biochem. 2004;91(1):54–69. Pubmed PMID: 14689582.Google Scholar
  116. 116.
    Thysell E, Surowiec I, Hörnberg E, Crnalic S, Widmark A, Johansson AI, et al. Metabolomic characterization of human prostate cancer bone metastases reveals increased levels of cholesterol. PLoS One. 2010;5(12):e14175.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Edinger AL, Thompson CB. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell. 2002;13(7):2276–88. PubMed PMID: 12134068. Pubmed Central PMCID: 117312.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Bauer DE, Harris MH, Plas DR, Lum JJ, Hammerman PS, Rathmell JC, et al. Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand. FASEB J. 2004;18(11):1303–5. PubMed PMID: 15180958. Pubmed Central PMCID: 4458073.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84. PubMed PMID: 16469695.PubMedCrossRefGoogle Scholar
  120. 120.
    Gurel B, Iwata T, Koh CM, Jenkins RB, Lan F, Van Dang C, et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Modern Pathol. 2008;21(9):1156–67. PubMed PMID: 18567993. Pubmed Central PMCID: 3170853.CrossRefGoogle Scholar
  121. 121.
    Koh CM, Bieberich CJ, Dang CV, Nelson WG, Yegnasubramanian S, De Marzo AM. MYC and Prostate Cancer. Genes Cancer. 2010;1(6):617–28. PubMed PMID: 21779461. Pubmed Central PMCID: 3092219.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Dang CV. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med. 2013;3(8):pii: a014217. PubMed PMID: 23906881. Pubmed Central PMCID: 3721271.CrossRefGoogle Scholar
  123. 123.
    Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008;105(48):18782–7. PubMed PMID: 19033189. Pubmed Central PMCID: 2596212.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW, et al. Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A. 2012;109(23):8983–8. PubMed PMID: 22615405. Pubmed Central PMCID: 3384197.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Edmunds LR, Sharma L, Kang A, Lu J, Vockley J, Basu S, et al. c-Myc programs fatty acid metabolism and dictates acetyl-CoA abundance and fate. J Biol Chem. 2014;289(36):25382–92. PubMed PMID: 25053415. Pubmed Central PMCID: 4155699.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Morrish F, Noonan J, Perez-Olsen C, Gafken PR, Fitzgibbon M, Kelleher J, et al. Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J Biol Chem. 2010;285(47):36267–74. PubMed PMID: 20813845. Pubmed Central PMCID: 2978554.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Eberlin LS, Gabay M, Fan AC, Gouw AM, Tibshirani RJ, Felsher DW, et al. Alteration of the lipid profile in lymphomas induced by MYC overexpression. Proc Natl Acad Sci U S A. 2014;111(29):10450–5. PubMed PMID: 24994904. Pubmed Central PMCID: 4115527.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Yuneva MO, Fan TW, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 2012;15(2):157–70. PubMed PMID: 22326218. Pubmed Central PMCID: 3282107.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Prioleau J, Schnitt SJ. p53 antigen loss in stored paraffin slides. N Engl J Med. 1995;332(22):1521–2. PubMed PMID: 7739705.PubMedCrossRefGoogle Scholar
  130. 130.
    Flavin R, Pettersson A, Hendrickson WK, Fiorentino M, Finn S, Kunz L, et al. SPINK1 protein expression and prostate cancer progression. Clin Cancer Res. 2014;20(18):4904–11. PubMed PMID: 24687926. Pubmed Central PMCID: 4167171.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Hendrickson WK, Flavin R, Kasperzyk JL, Fiorentino M, Fang F, Lis R, et al. Vitamin D receptor protein expression in tumor tissue and prostate cancer progression. J Clin Oncol. 2011;29(17):2378–85. PubMed PMID: 21537045. Pubmed Central PMCID: 3107752.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Yuan M, Breitkopf SB, Yang X, Asara JM. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc. 2012;7(5):872–81. PubMed PMID: 22498707. Pubmed Central PMCID: 3685491.Google Scholar
  133. 133.
    Kelly AD, Breitkopf SB, Yuan M, Goldsmith J, Spentzos D, Asara JM. Metabolomic profiling from formalin-fixed, paraffin-embedded tumor tissue using targeted LC/MS/MS: application in sarcoma. PLoS One. 2011;6(10):e25357. PubMed PMID: 21984915. Pubmed Central PMCID: 3184969.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Cacciatore S, Zadra S, Bango C, Penney KL, Tyekucheva S, Yanes O, Loda M. Metabolic Profiling in Formalin-Fixed and Paraffin-Embedded Prostate Cancer Tissues. Mol Cancer Res. 2017;15 (4):439–447. Pubmed PMID: 28074002. Pubmed Central PMCID: 5552883.Google Scholar
  135. 135.
    Buck A, Ly A, Balluff B, Sun N, Gorzolka K, Feuchtinger A, et al. High-resolution MALDI-FT-ICR MS imaging for the analysis of metabolites from formalin-fixed, paraffin-embedded clinical tissue samples. J Pathol. 2015;237(1):123–32. PubMed PMID: 25965788.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Stefano Cacciatore
    • 1
    • 2
  • Giorgia Zadra
    • 1
    • 3
  • Massimo Loda
    • 1
    • 3
    • 4
    • 5
  1. 1.Department of Oncologic PathologyDana-Farber Cancer InstituteBostonUSA
  2. 2.Institute of Reproductive and Developmental BiologyImperial College LondonLondonUK
  3. 3.Department of PathologyBrigham and Women’s HospitalBostonUSA
  4. 4.The Broad InstituteBostonUSA
  5. 5.Division of Cancer StudiesKing’s College LondonLondonUK

Personalised recommendations