Proteomics in Prostate Cancer Research

  • Samantha E. T. Larkin
  • Benjamin Abbott
  • Michael D. Brown
  • Thomas R. Jackson
  • Noel W. Clarke
  • Paul A. Townsend
Part of the Molecular Pathology Library book series (MPLB)


Early detection of disease possible through the detection of biological markers (biomarkers) is critical for the healthcare journey of all patients within the twenty-first century. Biomarkers are defined by the National Institutes of Health as ‘characteristics that are objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention’. Therefore, to reduce mortality rates, it is imperative new disease-linked biomarkers are discovered in order to develop future diagnostics and the therapeutics. Once identified, it may for instance enable diagnoses, staging and treatment of haematological cancers (such as leukaemia) and solid tumours (such as prostate). Identification of these disease-linked biomarkers can be a slow and arduous process, although the market will be worth an estimate $45.5 billion by 2020. To date, a considerable amount of this research results in failure to identify any novel, clinically relevant markers. Biomarker discovery fails, mainly due to poor study design, sample procurement and the inability to actually identify applicable markers, either due low concentration or inability to resolve two similar markers. This if further compounded by the fact that even if identification is possible, current diagnostic and therapeutic assays rely on antibodies to be raised to the target, which is not always possible. Here we describe modern approaches to detecting prostate cancer (PCa) and normal prostate-associated biomarkers utilising mass spectrometry as our tool for detection and identification.


Proteomics Prostate cancer Precision medicine Stratification Real-time proteomics Biomarkers 


  1. 1.
    Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012;61(6):1079–92. PubMed PMID: 22424666.PubMedCrossRefGoogle Scholar
  2. 2.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30. PubMed PMID: 23335087.PubMedCrossRefGoogle Scholar
  3. 3.
    George NJ. Natural history of localised prostatic cancer managed by conservative therapy alone. Lancet. 1988;1(8584):494–7. PubMed PMID: 2893917.PubMedCrossRefGoogle Scholar
  4. 4.
    Loberg RD, Logothetis CJ, Keller ET, Pienta KJ. Pathogenesis and treatment of prostate cancer bone metastases: targeting the lethal phenotype. J Clin Oncol. 2005;23(32):8232–41. PubMed PMID: 16278478.PubMedCrossRefGoogle Scholar
  5. 5.
    Franks LM. Latent carcinoma of the prostate. J Pathol Bacteriol. 1954;68(2):603–16. PubMed PMID: 14354564.PubMedCrossRefGoogle Scholar
  6. 6.
    Thompson IM, Pauler Ankerst D, Chi C, Goodman PJ, Tangen CM, Lippman SM, et al. Prediction of prostate cancer for patients receiving finasteride: results from the Prostate Cancer Prevention Trial. J Clin Oncol. 2007;25(21):3076–81. PubMed PMID: 17634486.PubMedCrossRefGoogle Scholar
  7. 7.
    Underwood JCE. General and systematic pathology. 2nd edn., illustrated by Robert Britton and Peter Lamb. eds., New York, NY; Edinburgh: Churchill Livingstone; 1996.Google Scholar
  8. 8.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108. PubMed PMID: 15761078.PubMedCrossRefGoogle Scholar
  9. 9.
    Shimizu H, Ross RK, Bernstein L, Yatani R, Henderson BE, Mack TM. Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles County. Br J Cancer. 1991;63(6):963–6. PubMed PMID: 2069852. Pubmed Central PMCID: 1972548.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Carvalhal GF, Smith DS, Mager DE, Ramos C, Catalona WJ. Digital rectal examination for detecting prostate cancer at prostate specific antigen levels of 4 ng./ml. or less. J Urol. 1999;161(3):835–9. PubMed PMID: 10022696.PubMedCrossRefGoogle Scholar
  11. 11.
    Hernandez J, Thompson IM. Prostate-specific antigen: a review of the validation of the most commonly used cancer biomarker. Cancer. 2004;101(5):894–904.PubMedCrossRefGoogle Scholar
  12. 12.
    Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med. 2004;350(22):2239–46. PubMed PMID: 15163773.PubMedCrossRefGoogle Scholar
  13. 13.
    Catalona WJ, Smith DS, Ratliff TL, Dodds KM, Coplen DE, Yuan JJ, et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med. 1991;324(17):1156–61. PubMed PMID: 1707140.PubMedCrossRefGoogle Scholar
  14. 14.
    Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360(13):1320–8. PubMed PMID: 19297566.PubMedCrossRefGoogle Scholar
  15. 15.
    James ND, Spears MR, Clarke NW, Dearnaley DP, De Bono JS, Gale J, et al. Survival with newly diagnosed metastatic prostate cancer in the “Docetaxel Era”: data from 917 patients in the control arm of the STAMPEDE Trial (MRC PR08, CRUK/06/019). Eur Urol. 2015;67(6):1028–38. PubMed PMID: 25301760.PubMedCrossRefGoogle Scholar
  16. 16.
    Halabi S, Lin CY, Kelly WK, Fizazi KS, Moul JW, Kaplan EB, et al. Updated prognostic model for predicting overall survival in first-line chemotherapy for patients with metastatic castration-resistant prostate cancer. J Clin Oncol. 2014;32(7):671–7. PubMed PMID: 24449231. Pubmed Central PMCID: 3927736.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Gillessen S, Omlin A, Attard G, de Bono JS, Efstathiou E, Fizazi K, et al. Management of patients with advanced prostate cancer: recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann Oncol. 2015;26(8):1589–604. PubMed PMID: 26041764. Pubmed Central PMCID: 4511225.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, et al. Progress with gene-product mapping of the Mollicutes: mycoplasma genitalium. Electrophoresis. 1995;16(7):1090–4. PubMed PMID: 7498152.PubMedCrossRefGoogle Scholar
  19. 19.
    Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis. 1998;19(11):1853–61. PubMed PMID: 9740045.PubMedCrossRefGoogle Scholar
  20. 20.
    Kuruma H, Egawa S, Oh-Ishi M, Kodera Y, Maeda T. Proteome analysis of prostate cancer. Prostate Cancer Prostatic Dis. 2005;8(1):14–21. PubMed PMID: 15477873.PubMedCrossRefGoogle Scholar
  21. 21.
    Issaq H, Veenstra T. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): advances and perspectives. Biotechniques. 2008;44(5):697–8. 700. PubMed PMID: 18474047.PubMedCrossRefGoogle Scholar
  22. 22.
    Fey SJ, Larsen PM. 2D or not 2D. Two-dimensional gel electrophoresis. Curr Opin Chem Biol. 2001;5(1):26–33. PubMed PMID: 11166644.PubMedCrossRefGoogle Scholar
  23. 23.
    Byrne JC, Downes MR, O’Donoghue N, O’Keane C, O’Neill A, Fan Y, et al. 2D-DIGE as a strategy to identify serum markers for the progression of prostate cancer. J Proteome Res. 2009;8(2):942–57. PubMed PMID: 19093873.PubMedCrossRefGoogle Scholar
  24. 24.
    Maurya P, Meleady P, Dowling P, Clynes M. Proteomic approaches for serum biomarker discovery in cancer. Anticancer Res. 2007;27(3 A):1247–55.PubMedGoogle Scholar
  25. 25.
    Masters JR. Clinical applications of expression profiling and proteomics in prostate cancer. Anticancer Res. 2007;27(3A):1273.PubMedGoogle Scholar
  26. 26.
    Savaryn JP, Catherman AD, Thomas PM, Abecassis MM, Kelleher NL. The emergence of top-down proteomics in clinical research. Genome Med. 2013;5(6):53. PubMed PMID: 23806018. Pubmed Central PMCID: 3707033.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004;3(12):1154–69. PubMed PMID: 15385600.PubMedCrossRefGoogle Scholar
  28. 28.
  29. 29.
    AppliedBiosystems. Applied Biosystems mTRAQ™ reagents: amine-modifying labeling reagents for relative and absolute protein quantitation. 2015. Available from:
  30. 30.
    Asara JM, Christofk HR, Freimark LM, Cantley LC. A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen. Proteomics. 2008;8(5):994–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Schulze WX, Usadel B. Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol. 2010;61:491–516. PubMed PMID: 20192741.PubMedCrossRefGoogle Scholar
  32. 32.
    Glen A, Gan CS, Hamdy FC, Eaton CL, Cross SS, Catto JW, et al. iTRAQ-facilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression. J Proteome Res. 2008;7(3):897–907. PubMed PMID: 18232632.PubMedCrossRefGoogle Scholar
  33. 33.
    Cooper B, Feng J, Garrett WM. Relative, label-free protein quantitation: spectral counting error statistics from nine replicate MudPIT samples. J Am Soc Mass Spectrom. 2010;21(9):1534–46.PubMedCrossRefGoogle Scholar
  34. 34.
    Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11(6):0111.016717. PubMed PMID: 22261725. Pubmed Central PMCID: 3433915.CrossRefGoogle Scholar
  35. 35.
    Davalieva K, Kiprijanovska S, Komina S, Petrusevska G, Zografska NC, Polenakovic M. Proteomics analysis of urine reveals acute phase response proteins as candidate diagnostic biomarkers for prostate cancer. Proteome Science. 2015;13(1):2. PubMed PMID: PMC4316650.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Haj-Ahmad TA, Abdalla MAK, Haj-Ahmad Y. Potential urinary protein biomarker candidates for the accurate detection of prostate cancer among benign prostatic hyperplasia patients. J Cancer. 2014;5(3):182–91. PubMed PMID: PMC3931266.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Jayapalan JJ, Ng KL, Shuib AS, Razack AHA, Hashim OH. Urine of patients with early prostate cancer contains lower levels of light chain fragments of inter-alpha-trypsin inhibitor and saposin B but increased expression of an inter-alpha-trypsin inhibitor heavy chain 4 fragment. Electrophoresis. 2013;34(11):1663–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Okamoto A, Yamamoto H, Imai A, Hatakeyama S, Iwabuchi I, Yoneyama T, et al. Protein profiling of post-prostatic massage urine specimens by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry to discriminate between prostate cancer and benign lesions. Oncol Rep. 2009;21(1):73–9.PubMedGoogle Scholar
  39. 39.
    Theodorescu D, Fliser D, Wittke S, Mischak H, Krebs R, Walden M, et al. Pilot study of capillary electrophoresis coupled to mass spectrometry as a tool to define potential prostate cancer biomarkers in urine. Electrophoresis. 2005;26(14):2797–808.PubMedCrossRefGoogle Scholar
  40. 40.
    Theodorescu D, Schiffer E, Bauer HW, Douwes F, Eichhorn F, Polley R, et al. Discovery and validation of urinary biomarkers for prostate cancer. Proteomics Clin Appl. 2008;2(4):556–70. PubMed PMID: PMC2744126.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Iwakiri J, Granbois K, Wehner N, Graves HC, Stamey T. An analysis of urinary prostate specific antigen before and after radical prostatectomy: evidence for secretion of prostate specific antigen by the periurethral glands. J Urol. 1993;149(4):783–6. PubMed PMID: 7681118.PubMedCrossRefGoogle Scholar
  42. 42.
    Adam BL, Qu Y, Davis JW, Ward MD, Clements MA, Cazares LH, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 2002;62(13):3609–14.PubMedGoogle Scholar
  43. 43.
    Petricoin EF, Ornstein DK, Paweletz CP, Ardekani A, Hackett PS, Hitt BA, et al. Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst. 2002;94(20):1576–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Qu Y, Adam B-L, Yasui Y, Ward MD, Cazares LH, Schellhammer PF, et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem. 2002;48(10):1835–43.PubMedGoogle Scholar
  45. 45.
    McLerran D, Grizzle WE, Feng Z, Thompson IM, Bigbee WL, Cazares LH, et al. SELDI-TOF MS whole serum proteomic profiling with IMAC surface does not reliably detect prostate cancer. Clin Chem. 2008;54(1):53–60. PubMed PMID: 18024530.PubMedCrossRefGoogle Scholar
  46. 46.
    Adam BL, Vlahou A, Semmes OJ, Wright GL Jr. Proteomic approaches to biomarker discovery in prostate and bladder cancers. Proteomics. 2001;1(10):1264–70. PubMed PMID: 11721637.PubMedCrossRefGoogle Scholar
  47. 47.
    Pan YZ, Xiao XY, Zhao D, Zhang L, Ji GY, Li Y, et al. Application of surface-enhanced laser desorption/ionization time-of-flight-based serum proteomic array technique for the early diagnosis of prostate cancer. Asian J Androl. 2006;8(1):45–51.PubMedCrossRefGoogle Scholar
  48. 48.
    Malik G, Ward MD, Gupta SK, Trosset MW, Grizzle WE, Adam BL, et al. Serum levels of an isoform of apolipoprotein A-II as a potential marker for prostate cancer. Clin Cancer Res. 2005;11(3):1073–85.PubMedGoogle Scholar
  49. 49.
    Ehmann M, Felix K, Hartmann D, Schnolzer M, Nees M, Vorderwulbecke S, et al. Identification of potential markers for the detection of pancreatic cancer through comparative serum protein expression profiling. Pancreas. 2007;34(2):205–14. PubMed PMID: 17312459.PubMedCrossRefGoogle Scholar
  50. 50.
    Le L, Chi K, Tyldesley S, Flibotte S, Diamond DL, Kuzyk MA, et al. Identification of serum amyloid a as a biomarker to distinguish prostate cancer patients with bone lesions. Clin Chem. 2005;51(4):695–707.PubMedCrossRefGoogle Scholar
  51. 51.
    Al-Ruwaili JA, Larkin SE, Zeidan BA, Taylor MG, Adra CN, Aukim-Hastie CL, et al. Discovery of serum protein biomarkers for prostate cancer progression by proteomic analysis. Cancer Genomics—Proteomics. 2010;7(2):93–103.PubMedGoogle Scholar
  52. 52.
    Rosenzweig CN, Zhang Z, Sun X, Sokoll LJ, Osborne K, Partin AW, et al. Predicting prostate cancer biochemical recurrence using a panel of serum proteomic biomarkers. J Urol. 2009;181(3):1407–14. PubMed PMID: 19157448. Pubmed Central PMCID: 4130150.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Qin S, Ferdinand AS, Richie JP, O’Leary MP, Mok SC, Liu BCS. Chromatofocusing fractionation and two-dimensional difference gel electrophoresis for low abundance serum proteins. Proteomics. 2005;5(12):3183.PubMedCrossRefGoogle Scholar
  54. 54.
    Jayapalan JJ, Ng KL, Razack AHA, Hashim OH. Identification of potential complementary serum biomarkers to differentiate prostate cancer from benign prostatic hyperplasia using gel- and lectin-based proteomics analyses. Electrophoresis. 2012;33(12):1855–62.PubMedCrossRefGoogle Scholar
  55. 55.
    Bergamini S, Bellei E, Reggiani Bonetti L, Monari E, Cuoghi A, Borelli F, et al. Inflammation: an important parameter in the search of prostate cancer biomarkers. Proteome Sci. 2014;12:32. PubMed PMID: 24944525. Pubmed Central PMCID: 4061775.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Fan Y, Murphy TB, Byrne JC, Brennan L, Fitzpatrick JM, Watson RWG. Applying random forests to identify biomarker panels in serum 2D-DIGE data for the detection and staging of prostate cancer. J Proteome Res. 2011;10(3):1361–73.PubMedCrossRefGoogle Scholar
  57. 57.
    Lam YW, Mobley JA, Evans JE, Carmody JF, Ho SM. Mass profiling-directed isolation and identification of a stage-specific serologic protein biomarker of advanced prostate cancer. Proteomics. 2005;5(11):2927–38. PubMed PMID: 15952230.PubMedCrossRefGoogle Scholar
  58. 58.
    Rehman I, Evans CA, Glen A, Cross SS, Eaton CL, Down J, et al. iTRAQ identification of candidate serum biomarkers associated with metastatic progression of human prostate cancer. PLoS One. 2012;7(2):e30885. PubMed PMID: 22355332. Pubmed Central PMCID: 3280251.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Meehan KL, Holland JW, Dawkins HJ. Proteomic analysis of normal and malignant prostate tissue to identify novel proteins lost in cancer. Prostate. 2002;50(1):54–63. PubMed PMID: 11757036.PubMedCrossRefGoogle Scholar
  60. 60.
    Lexander H, Palmberg C, Hellman U, Auer G, Hellström M, Franzén B, et al. Correlation of protein expression, Gleason score and DNA ploidy in prostate cancer. Proteomics. 2006;6(15):4370–80.PubMedCrossRefGoogle Scholar
  61. 61.
    Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A. 1994;91(24):11733.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Maruyama R, Toyooka S, Toyooka KO, Virmani AK, Zochbauer-Muller S, Farinas AJ, et al. Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin Cancer Res. 2002;8(2):514–9.PubMedGoogle Scholar
  63. 63.
    Johansson B, Pourian MR, Chuan YC, Byman I, Bergh A, Pang ST, et al. Proteomic comparison of prostate cancer cell lines LNCaP-FGC and LNCaP-r reveals heat shock protein 60 as a marker for prostate malignancy. Prostate. 2006;66(12):1235.PubMedCrossRefGoogle Scholar
  64. 64.
    Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, et al. LNCaP model of human prostatic carcinoma. Cancer Res. 1983;43(4):1809–18. PubMed PMID: 6831420.PubMedGoogle Scholar
  65. 65.
    Dozmorov MG, Hurst RE, Culkin DJ, Kropp BP, Frank MB, Osban J, et al. Unique patterns of molecular profiling between human prostate cancer LNCaP and PC-3 cells. Prostate. 2009;69(10):1077–90. PubMed PMID: 19343732.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Alaiya AA, Al-Mohanna M, Aslam M, Shinwari Z, Al-Mansouri L, Al-Rodayan M, et al. Proteomics-based signature for human benign prostate hyperplasia and prostate adenocarcinoma. Int J Oncol. 2011;38(4):1047–57. PubMed PMID: 21305254.PubMedCrossRefGoogle Scholar
  67. 67.
    Lin JF, Xu J, Tian HY, Gao X, Chen QX, Gu Q, et al. Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis. Int J Cancer. 2007;121(12):2596–605. PubMed PMID: 17722004.PubMedCrossRefGoogle Scholar
  68. 68.
    Ummanni R, Junker H, Zimmermann U, Venz S, Teller S, Giebel J, et al. Prohibitin identified by proteomic analysis of prostate biopsies distinguishes hyperplasia and cancer. Cancer Lett. 2008;266(2):171–85. PubMed PMID: 18384941.PubMedCrossRefGoogle Scholar
  69. 69.
    Ummanni R, Mundt F, Pospisil H, Venz S, Scharf C, Barett C, et al. Identification of clinically relevant protein targets in prostate cancer with 2D-DIGE coupled mass spectrometry and systems biology network platform. PLoS One. 2011;6(2):e16833. PubMed PMID: 21347291. Pubmed Central PMCID: 3037937.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Khamis ZI, Iczkowski KA, Sahab ZJ, Sang QX. Protein profiling of isolated leukocytes, myofibroblasts, epithelial, Basal, and endothelial cells from normal, hyperplastic, cancerous, and inflammatory human prostate tissues. J Cancer. 2010;1:70–9. PubMed PMID: 20842227. Pubmed Central PMCID: 2938068.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Han ZD, Zhang YQ, He HC, Dai QS, Qin GQ, Chen JH, et al. Identification of novel serological tumor markers for human prostate cancer using integrative transcriptome and proteome analysis. Med Oncol. 2012;29(4):2877–88. PubMed PMID: 22215415.PubMedCrossRefGoogle Scholar
  72. 72.
    Davalieva K, Kostovska IM, Kiprijanovska S, Markoska K, Kubelka-Sabit K, Filipovski V, et al. Proteomics analysis of malignant and benign prostate tissue by 2D DIGE/MS reveals new insights into proteins involved in prostate cancer. Prostate. 2015;75(14):1586–600. PubMed PMID: 26074449.PubMedCrossRefGoogle Scholar
  73. 73.
    Rowland JG, Robson JL, Simon WJ, Leung HY, Slabas AR. Evaluation of an in vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP cells. Proteomics. 2007;7(1):47.PubMedCrossRefGoogle Scholar
  74. 74.
    Skvortsov S, Schafer G, Stasyk T, Fuchsberger C, Bonn GK, Bartsch G, et al. Proteomics profiling of microdissected low- and high-grade prostate tumors identifies Lamin A as a discriminatory biomarker. J Proteome Res. 2011;10(1):259–68. PubMed PMID: 20977276.PubMedCrossRefGoogle Scholar
  75. 75.
    Pang J, Liu WP, Liu XP, Li LY, Fang YQ, Sun QP, et al. Profiling protein markers associated with lymph node metastasis in prostate cancer by DIGE-based proteomics analysis. J Proteome Res. 2010;9(1):216–26. PubMed PMID: 19894759.PubMedCrossRefGoogle Scholar
  76. 76.
    Zheng Y, Xu Y, Ye B, Lei J, Weinstein MH, O’Leary MP, et al. Prostate carcinoma tissue proteomics for biomarker discovery. Cancer. 2003;98(12):2576–82. PubMed PMID: 14669276.PubMedCrossRefGoogle Scholar
  77. 77.
    Cheung PK, Woolcock B, Adomat H, Sutcliffe M, Bainbridge TC, Jones EC, et al. Protein profiling of microdissected prostate tissue links growth differentiation factor 15 to prostate carcinogenesis. Cancer Res. 2004;64(17):5929–33. PubMed PMID: 15342369.PubMedCrossRefGoogle Scholar
  78. 78.
    Liu AY, Zhang H, Sorensen CM, Diamond DL. Analysis of prostate cancer by proteomics using tissue specimens. J Urol. 2005;173(1):73–8. PubMed PMID: 15592032.PubMedCrossRefGoogle Scholar
  79. 79.
    Griffin TJ, Han DKM, Gygi SP, Rist B, Lee H, Aebersold R, et al. Toward a high-throughput approach to quantitative proteomic analysis: expression-dependent protein identification by mass spectrometry. J Am Soc Mass Spectrom. 2001;12(12):1238–46.PubMedCrossRefGoogle Scholar
  80. 80.
    Arnott D, Kishiyama A, Luis EA, Ludlum SG, Marsters JC, Stults JT. Selective detection of membrane proteins without antibodies a mass spectrometric version of the western blot. Mol Cell Proteomics. 2002;1(2):148–56.PubMedCrossRefGoogle Scholar
  81. 81.
    Wright ME, Eng J, Sherman J, Hockenbery DM, Nelson PS, Galitski T, et al. Identification of androgen-coregulated protein networks from the microsomes of human prostate cancer cells. Genome Biol. 2004;5(1):4.CrossRefGoogle Scholar
  82. 82.
    Meehan KL, Sadar MD. Quantitative profiling of LNCaP prostate cancer cells using isotope-coded affinity tags and mass spectrometry. Proteomics. 2004;4(4):1116.PubMedCrossRefGoogle Scholar
  83. 83.
    Martin DB, Gifford DR, Wright ME, Keller A, Yi E, Goodlett DR, et al. Quantitative proteomic analysis of proteins released by neoplastic prostate epithelium. Cancer Res. 2004;64(1):347–55.PubMedCrossRefGoogle Scholar
  84. 84.
    Garbis SD, Tyritzis SI, Roumeliotis T, Zerefos P, Giannopoulou EG, Vlahou A, et al. Search for potential markers for prostate cancer diagnosis, prognosis and treatment in clinical tissue specimens using amine-specific isobaric tagging (iTRAQ) with two-dimensional liquid chromatography and tandem mass spectrometry. J Proteome Res. 2008;7(8):3146–58. PubMed PMID: 18553995.PubMedCrossRefGoogle Scholar
  85. 85.
    Sun C, Song C, Ma Z, Xu K, Zhang Y, Jin H, et al. Periostin identified as a potential biomarker of prostate cancer by iTRAQ-proteomics analysis of prostate biopsy. Proteome Sci. 2011;9:22. PubMed PMID: 21504578. Pubmed Central PMCID: 3100237.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Nagano K, Masters JR, Akpan A, Yang A, Corless S, Wood C, et al. Differential protein synthesis and expression levels in normal and neoplastic human prostate cells and their regulation by type I and II interferons. Oncogene. 2003;23(9):1693–703.CrossRefGoogle Scholar
  87. 87.
    Sardana G, Jung K, Stephan C, Diamandis EP. Proteomic analysis of conditioned media from the PC3, LNCaP, and 22Rv1 prostate cancer cell lines: discovery and validation of candidate prostate cancer biomarkers. J Proteome Res. 2008;7(8):3329–38. PubMed PMID: 18578523.PubMedCrossRefGoogle Scholar
  88. 88.
    Geiger T, Wehner A, Schaab C, Cox J, Mann M. Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics. 2012;11(3):M111 014050. PubMed PMID: 22278370. Pubmed Central PMCID: 3316730.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Liu Y, Chen J, Sethi A, Li QK, Chen L, Collins B, et al. Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness. Mol Cell Proteomics. 2014;13(7):1753–68. PubMed PMID: 24741114. Pubmed Central PMCID: 4083113.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Wang TJ, Rittenhouse HG, Wolfert RL, Lynne CM, Brackett NL. PSA concentrations in seminal plasma. Clin Chem. 1998;44(4):895–6. PubMed PMID: 9554514.PubMedGoogle Scholar
  91. 91.
    Robertson SA, Mau VJ, Hudson SN, Tremellen KP. Cytokine-leukocyte networks and the establishment of pregnancy. Am J Reprod Immunol. 1997;37(6):438–42. PubMed PMID: 9228299.PubMedCrossRefGoogle Scholar
  92. 92.
    Gonzales GF. Function of seminal vesicles and their role on male fertility. Asian J Androl. 2001;3(4):251–8. PubMed PMID: 11753468.PubMedGoogle Scholar
  93. 93.
    Duncan MW, Thompson HS. Proteomics of semen and its constituents. Proteomics Clin Appl. 2007;1(8):861–75. PubMed PMID: 21136740.PubMedCrossRefGoogle Scholar
  94. 94.
    Mann T. The biochemistry of semen. London: Methuen and Co Ltd; 1954.CrossRefGoogle Scholar
  95. 95.
    Mann T, Lutwak-Mann C. Male reproductive function and semen: themes and trends in physiology, biochemistry and investigative andrology. Berlin: Springer; 1981.CrossRefGoogle Scholar
  96. 96.
    Brooks DE, Tate ME, Mann T, Martin AW. Phosphoglycopeptide, a major constituent of the spermatophoric plasma of the octopus (Octopus dofleini martini). J Reprod Fertil. 1981;63(2):515–21. PubMed PMID: 7299753.PubMedCrossRefGoogle Scholar
  97. 97.
    Drabovich AP, Saraon P, Jarvi K, Diamandis EP. Seminal plasma as a diagnostic fluid for male reproductive system disorders. Nat Rev Urol. 2014;11(5):278–88. PubMed PMID: 24709963.PubMedCrossRefGoogle Scholar
  98. 98.
    Mann T. Secretory function of the prostate, seminal vesicle and other male accessory organs of reproduction. J Reprod Fertil. 1974;37(1):179–88. PubMed PMID: 4593605.PubMedCrossRefGoogle Scholar
  99. 99.
    Arata de Bellabarba G, Tortolero I, Villarroel V, Molina CZ, Bellabarba C, Velazquez E. Nonsperm cells in human semen and their relationship with semen parameters. Arch Androl. 2000;45(3):131–6. PubMed PMID: 11111860.PubMedCrossRefGoogle Scholar
  100. 100.
    Starita-Geribaldi M, Roux F, Garin J, Chevallier D, Fenichel P, Pointis G. Development of narrow immobilized pH gradients covering one pH unit for human seminal plasma proteomic analysis. Proteomics. 2003;3(8):1611–9. PubMed PMID: 12923785.PubMedCrossRefGoogle Scholar
  101. 101.
    Batruch I, Lecker I, Kagedan D, Smith CR, Mullen BJ, Grober E, et al. Proteomic analysis of seminal plasma from normal volunteers and post-vasectomy patients identifies over 2000 proteins and candidate biomarkers of the urogenital system. J Proteome Res. 2011;10(3):941–53. PubMed PMID: 21142078.PubMedCrossRefGoogle Scholar
  102. 102.
    Ronquist G, Brody I. The prostasome: its secretion and function in man. Biochim Biophys Acta. 1985;822(2):203–18. PubMed PMID: 2992593.PubMedCrossRefGoogle Scholar
  103. 103.
    Fabiani R, Johansson L, Lundkvist O, Ronquist G. Enhanced recruitment of motile spermatozoa by prostasome inclusion in swim-up medium. Hum Reprod. 1994;9(8):1485–9. PubMed PMID: 7989510.PubMedCrossRefGoogle Scholar
  104. 104.
    Lilja H, Laurell CB. Liquefaction of coagulated human semen. Scand J Clin Lab Invest. 1984;44(5):447–52. PubMed PMID: 6385215.PubMedCrossRefGoogle Scholar
  105. 105.
    Carlsson L, Pahlson C, Bergquist M, Ronquist G, Stridsberg M. Antibacterial activity of human prostasomes. Prostate. 2000;44(4):279–86. PubMed PMID: 10951492.PubMedCrossRefGoogle Scholar
  106. 106.
    Carlsson L, Lennartsson L, Nilsson BO, Nilsson S, Ronquist G. Growth-inhibitory effect of prostasomes on prostatic cancer cell lines in culture. Eur Urol. 2000;38(4):468–74. PubMed PMID: 11025388.PubMedCrossRefGoogle Scholar
  107. 107.
    Arienti G, Carlini E, Verdacchi R, Cosmi EV, Palmerini CA. Prostasome to sperm transfer of CD13/aminopeptidase N (EC Biochim Biophys Acta. 1997;1336(3):533–8. PubMed PMID: 9367181.PubMedCrossRefGoogle Scholar
  108. 108.
    Kravets FG, Lee J, Singh B, Trocchia A, Pentyala SN, Khan SA. Prostasomes: current concepts. Prostate. 2000;43(3):169–74. PubMed PMID: 10797491.PubMedCrossRefGoogle Scholar
  109. 109.
    Utleg AG, Yi EC, Xie T, Shannon P, White JT, Goodlett DR, et al. Proteomic analysis of human prostasomes. Prostate. 2003;56(2):150–61. PubMed PMID: 12746840.PubMedCrossRefGoogle Scholar
  110. 110.
    Ilic D, O’Connor D, Green S, Wilt TJ. Screening for prostate cancer: an updated Cochrane systematic review. BJU Int. 2011;107(6):882–91. PubMed PMID: 21392207.PubMedCrossRefGoogle Scholar
  111. 111.
    Qingyi Z, Lin Y, Junhong W, Jian S, Weizhou H, Long M, et al. Unfavorable prognostic value of human PEDF decreased in high-grade prostatic intraepithelial neoplasia: a differential proteomics approach. Cancer Invest. 2009;27(7):794–801.PubMedCrossRefGoogle Scholar
  112. 112.
    Neuhaus J, Schiffer E, von Wilcke P, Bauer HW, Leung H, Siwy J, et al. Seminal plasma as a source of prostate cancer peptide biomarker candidates for detection of indolent and advanced disease. PLoS One. 2013;8(6):e67514. PubMed PMID: 23826311. Pubmed Central PMCID: 3691205.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Renneberg H, Konrad L, Dammshauser I, Seitz J, Aumuller G. Immunohistochemistry of prostasomes from human semen. Prostate. 1997;30(2):98–106. PubMed PMID: 9051148.PubMedCrossRefGoogle Scholar
  114. 114.
    Kovak MR, Saraswati S, Goddard SD, Diekman AB. Proteomic identification of galectin-3 binding ligands and characterization of galectin-3 proteolytic cleavage in human prostasomes. Andrology. 2013;1(5):682–91. PubMed PMID: 23836758. Pubmed Central PMCID: 4180284.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Hassan MI, Kumar V, Kashav T, Alam N, Singh TP, Yadav S. Proteomic approach for purification of seminal plasma proteins involved in tumor proliferation. J Sep Sci. 2007;30(12):1979–88. PubMed PMID: 17638362.PubMedCrossRefGoogle Scholar
  116. 116.
    Saraswati S, Block AS, Davidson MK, Rank RG, Mahadevan M, Diekman AB. Galectin-3 is a substrate for prostate specific antigen (PSA) in human seminal plasma. Prostate. 2011;71(2):197–208. PubMed PMID: 20672323. Pubmed Central PMCID: 3606048.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Drake RR, Kislinger T. The proteomics of prostate cancer exosomes. Expert Rev Proteomics. 2014;11(2):167–77. PubMed PMID: 24564711.PubMedCrossRefGoogle Scholar
  118. 118.
    Zhang X, Yuan X, Shi H, Wu L, Qian H, Exosomes XW. in cancer: small particle, big player. J Hematol Oncol. 2015;8:83. PubMed PMID: PMC4496882.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008;10(5):619–24.PubMedCrossRefGoogle Scholar
  120. 120.
    Skog J, Wurdinger T, van Rijn S, Meijer D, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and protein that promote tumor growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6. PubMed PMID: PMC3423894.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Overbye A, Skotland T, Koehler CJ, Thiede B, Seierstad T, Berge V, et al. Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget. 2015;6:30357. PubMed PMID: 26196085.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Ransohoff DF. Rules of evidence for cancer molecular-marker discovery and validation. Nat Rev Cancer. 2004;4(4):309–14. PubMed PMID: 15057290.PubMedCrossRefGoogle Scholar
  123. 123.
    McLerran D, Grizzle WE, Feng Z, Bigbee WL, Banez LL, Cazares LH, et al. Analytical validation of serum proteomic profiling for diagnosis of prostate cancer: sources of sample bias. Clin Chem. 2008;54(1):44–52. PubMed PMID: 17981926.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Samantha E. T. Larkin
    • 1
  • Benjamin Abbott
    • 2
  • Michael D. Brown
    • 2
  • Thomas R. Jackson
    • 2
  • Noel W. Clarke
    • 3
  • Paul A. Townsend
    • 2
  1. 1.Cancer Sciences Unit, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
  2. 2.Manchester Academic Health Sciences Centre, Faculty of Biology, Medicine and Health, Division of Cancer SciencesManchester Cancer Research Centre, University of ManchesterManchesterUK
  3. 3.The Christie and Salford Royal NHS Foundation TrustsManchesterUK

Personalised recommendations