Skip to main content

Epilogue

  • Chapter
  • First Online:
Intelligent Transportation Systems

Abstract

With the advancement of ICT, IoT, 3G, 4G wireless and cellular technology, our cities are transforming into smart cities impacting everyday life. ITS is seen as an inherent part of smart city infrastructure. Applications of ITS such as roadway operations and maintenance, traveler information, traffic monitoring, and road safety are getting attention from the research community. Specially, traffic monitoring and road safety enable ITS to directly impact our smart city life. Traffic monitoring provides on-demand traffic information to travelers where vehicles send traffic information to a back-end server. Road safety enables on-demand message transmission, e.g., traffic light status, vehicle movements, and collision avoidance or priority vehicles notification, among vehicles and between vehicles and infrastructure for safe driving. In the near future, vehicles will be equipped with onboard communication units for on-demand V2V, R2V and more roadside units (RSUs) will be deployed for V2I communications to facilitate ITS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A-Ghazaleh, H., & Alfa, A. S. (2008, May 11–14). Mobility prediction and spatial-temporal traffic estimation in wireless networks. InIEEE Vehicular Technology Conference, Singapore, pp. 2203–2207.

    Google Scholar 

  • A-Ghazaleh, H., & Alfa, A. S. (2010). Application of mobility prediction in wireless networks using markov renewal theory.IEEE Transactions on Vehicular Technology, 59(2), 46–57.

    Google Scholar 

  • A-Helali, A.-A., Mahmoud, A., A-Kharobi, T., & Sheltami, T. (2009, May 26–29). Analysis of handoff delay components for mobile-IP based 3GPP UMTS/WLAN interworking architecture. InInternational Conference on Advanced Information Networking and Applications Workshop, Bradford, UK, pp. 798–803.

    Google Scholar 

  • Aajami, M., & Suk, J. B. (2015). Optimal TXOP sharing in IEEE 802.11ac.IEEE Communications Letters, 19, 1141–1144.

    Google Scholar 

  • Abdelnasser, A., Hossain, E., & Kim, D. I. (2015). Tier-aware resource allocation in OFDMA macrocell-small cell networks.IEEE Transactions on Communications, 63, 695–710.

    Article  Google Scholar 

  • AccuROAM (2014). Mobile solutions for Wi-Fi: Mobile convergence technology.Accuris Networks Online.

    Google Scholar 

  • Ahmed, I., & Habibi, D. (2008, December 12–14). A novel mobile WiMAX solution for higher throughput. InIEEE Conference on Networks, New Delhi, India, pp. 1–5.

    Google Scholar 

  • Alam, K. M., Saini, M., & Saddik, A. E. (2015). Toward social internet of vehicles: Concept, architecture, and applications.IEEE Access, 3, 343–357.

    Article  Google Scholar 

  • Albasry, H., & Ahmed, Q. Z. (2016). Network-assisted D2D discovery method by using efficient power control strategy. InIEEE 83rd Vehicular Technology Conference.

    Google Scholar 

  • Altunbasak, H., & Owen, H. (2004, March 26–28). Alternative pair-wise key exchange protocols for robust security networks (IEEE 802.11i) in wireless LANs. InIEEE Southeast Conference, Nashille, TN, USA, pp. 3–9.

    Google Scholar 

  • Amdouni, I., & Filali, F. (2009, October 28–30). Intelligent strategies of access point selection for vehicle to infrastructure opportunistic communications. InIEEE Vehicular Networking Conference, Tokyo, Japan, pp. 1–8.

    Google Scholar 

  • Asheralieva, A., Erke, T. J., & Kilkki, K. (2009, November 14–17). Traffic characterization and service performance in FON network. InFirst International Conference on Future Information Networks, Beijing, China, pp. 285–291.

    Google Scholar 

  • Au, E. (2016). Exciting projects for PHY and MAC layers of IEEE 802.11.IEEE Vehicular Technology Magazine, 11, 79–81.

    Article  Google Scholar 

  • Baccelli, E., Jacquet, P., Mans, B., & Rodolakis, G. (2012). Highway vehicular delay tolerant networks: Information propagation speed properties.IEEE Transactions on Information Theory, 58, 1743–1756.

    Article  MathSciNet  MATH  Google Scholar 

  • Balasubramanian, A., Mahajan, R., Venkataramani, A., Levine, B. N., & Zahorjan, J. (2008, August 17–22). Interactive WiFi connectivity for moving vehicles. InACM SIGCOMM, Seattle, USA, pp. 427–438.

    Google Scholar 

  • Balasubramanian, A., Zhou, Y., Croft, W. B., Levine, B. N., & Venlataramani, A. (2007, September 14). Web search from a bus. InACM CHANTS, Montreal, Canada, pp. 59–66.

    Google Scholar 

  • Banda, L., Mzyece, M., & Noel, G. (2013a). An analysis of handover probability and data throughput in vehicular networks. InPan African International Conference on Information Science, Computing and Telecommunications.

    Google Scholar 

  • Banda, L., Mzyece, M., & Noel, G. (2013b). Fast handover management in IP-based vehicular networks. InIEEE International Conference on Industrial Technology.

    Google Scholar 

  • Barrios, C., Motai, Y., & Huston, D. (2015). Trajectory estimations using smartphones.IEEE Transactions on Industrial Electronics, 62, 7901–7910.

    Article  Google Scholar 

  • Basios, C. (2005, June 15–17). Defining architecture and key issues towards WLAN roaming. In8th International Conference on Telecommunications, Zagreb, Croatia, pp. 225–230.

    Google Scholar 

  • Bauza, R., Gozalvez, J., & Soriano, J. (2010). Road taffic congestion detection through cooperative vehicle-to-vehicle communications. InIEEE Workshop on User Mobility and Vehicular Networks (pp. 606–612).

    Google Scholar 

  • Behzad, A. (2002).Wireless LAN radios: System definition to transistor design. New York: Wiley-IEEE.

    Google Scholar 

  • Bejarano, O., Knightly, E. W., & Park, M. (2013). IEEE 802.11ac: From Channelization to Multi-User MIMO.IEEE Communications Magazine, 51, 84–90.

    Article  Google Scholar 

  • Bernstein, R. (1999).Schaum’s outline of theory and problems of elements of statistics II: Inferential statistics. New York: McGraw Hill.

    Google Scholar 

  • Bhola, J. (2002).Wireless LANs demystified. New York: McGraw-Hill Professional.

    Google Scholar 

  • Bilchev, G., Marston, D., Hristov, N., Peytchev, E., & Wall, N. (2004). Traffimatics – Intelligent co-operative vehicle highway systems.BT Technology Journal, 22, 73–83.

    Article  Google Scholar 

  • Bilstrup, K., Uhlemann, E., Strom, E. G., & Bilstrup, U. (2008, September 21–24). Evaluation of the IEEE 802.11p MAC method for vehicle-to-vehicle communication. InIEEE Vehicular Technology Conference, Calgary, pp. 1–5.

    Google Scholar 

  • Bing, B. (2008).Emerging technologies in wireless LANs: Theory, design and deployment. Cambridge: Cambridge University Press.

    Google Scholar 

  • Blank, A. G. (2004).TCP/IP foundations. New York: Wiley.

    Google Scholar 

  • Bodden, V. (2008).Internet. Racine, WI: The Creative Company.

    Google Scholar 

  • Borisov, N., Goldberg, I., & Wagner, D. (2001, July 16–21). Intercepting mobile communications: The insecurity of 802.11. InInternational Conference on Mobile Computing and Networking, Rome, Italy, pp. 180–189.

    Google Scholar 

  • Brady, P. T. (1969). A model for generating on-off speech patterns in two-way conversation.Bell Systems Technology Journal, 48, 2445–2472.

    Article  Google Scholar 

  • Bychkovsky, V., Hull, B., Miu, A., Balakrishnan, H., & Madden, S. (2006, September 24–29). A measurement study of vehicular internet access using in situ WiFi networks. In12th ACM MobiCom, Los Angeles, CA, USA.

    Google Scholar 

  • Caceres, M., Sottile, F., & Spirito, M. A. (2009, April 26–29). WLAN-based real time vehicle locating system. InIEEE Vehicular Technology Conference, Barcelona, Spain, pp. 1–5.

    Google Scholar 

  • Cao, Y., Sun, Z., & Riaz, M. (2012). Reach-and-spread: A historical geographic routing for delay/disruption tolerant networks.IET Networks, 1, 163–170.

    Article  Google Scholar 

  • Cao, Y., Sun, Z., Wang, N., Cruickshank, H., & Ahmad, N. (2013). A reliable and efficient geographic routing scheme for delay/disruption tolerant networks.IEEE Wireless Communication Letters, 2, 603–606.

    Article  Google Scholar 

  • Cardenas, L. R., Boutabia, M., & Afifi, H. (2008, June 29–July 5). Infrastructure-based approach for fast and seamless handovers. In3rd International Conference on Digital Communications, Bucharest, Romania, pp. 105–109.

    Google Scholar 

  • Chae, S., Chowdhury, M. Z., Nguyen, T., & Jang, Y. M. (2012). A dynamic frequency allocation scheme for moving small-cell networks. InInternational Conference on ICT Convergence (ICTC).

    Google Scholar 

  • Chakraborty, S., Frankkila, T., Peisa, J., & Synnergren, P. (2007).IMS multimedia telephony over cellular systems. New York: Wiley.

    Book  Google Scholar 

  • Chang, T. C.-Y., Wei, C.-Y., Hsu, M.-C., Lin, C.-Y., & Su, Y. T. (2016). Distributed clustering and spectrum-based proximity device discovery in a wireless network. InIEEE International Symposium on Broadband Multimedia Systems and Broadcasting.

    Google Scholar 

  • Chao, S.-J., Zhang, J.-M., & Tuan, C.-C. (2010, June 16). Hierarchical IP distribution mechanism for VANET. InInternational Conference on Ubiquitous and Future Networks, Jeju, South Korea, pp. 349–354.

    Google Scholar 

  • Chen, H.-H., & Guizani, M. (2006). Next generation wireless systems and networks. Chichester: Wiley (illustrated).

    Google Scholar 

  • Chen, J.-C., & Wang, Y.-P. (2005). Extensible authentication protocol (EAP) and IEEE 802.1x: Tutorial and empirical experience.IEEE Communications Magazine, 43, 26–32.

    Google Scholar 

  • Chen, J.-J., Tseng, Y.-C., & Lee, H.-W. (2007). A seamless handoff mechanism for DHCP-based IEEE 802.11 WLANs.IEEE Communications Letters, 11(8), 665–667.

    Article  Google Scholar 

  • Chen, X., & Qiao, D. (2010, March 15–19). HaND: Fast handoff with null Dwell time for IEEE 802.11 networks. InIEEE INFOCOM, San Diego, USA, pp. 1–9.

    Google Scholar 

  • Chen, Y., Kowalik, K., & Davis, M. (2009, November 13–15). MeshScan: Performance of passive handoff and active handoff. InInternational Conference on Wireless Communications and Signal Processing, Nanjing, China, pp. 1–5.

    Google Scholar 

  • Cheng, L., Zheng, J., & Xiao, J. (2015). A distributed downlink resource allocation algorithm for dense small cell networks. InInternational Conference on Wireless Communications Signal Processing (WCSP).

    Google Scholar 

  • Ching, W. K., & Ng, M. K. (2006).Markov chains: Model, algorithms and applications. Boston: Birkhauser.

    MATH  Google Scholar 

  • Chisalita, I., & Shahmehri, N. (2004, October 10–13). Vehicular communication – A candidate technology for traffic safety. InIEEE International Conference on Systems, Man and Cybernetics, Linkoping, Sweden, pp. 3903–3908.

    Google Scholar 

  • Cho, Y. (2007). Estimating velocity fields on a freeway from low-resolution videos.IEEE Transactions on Intelligent Transportation Systems, 7(4), 463–469.

    Article  Google Scholar 

  • Choi, H.-H., Song, O., Park, Y.-K., & Lee, J.-R. (2010). Performance evaluation of opportunistic vertical handover considering on-off characteristics of VoIP traffic.IEEE Transactions on Vehicular Technology, 59(6), 3115–3121.

    Article  Google Scholar 

  • Chou, C.-M., Li, C.-Y., Chien, W.-M., & Lan, K.-C. (2009, May 18–20). A feasibility study on vehicle-to-infrastructure communication: WiFi vs. WiMAX. In10th International Conference on Mobile Data Management: Systems, Services and Middleware, Taiwan.

    Google Scholar 

  • Chung, C., Jung, Y., & Kim, J. (2015). Saturation throughput analysis of IEEE 802.11ac TXOP sharing mode.IET Electronics Letters, 51, 2164–2166.

    Article  Google Scholar 

  • Chung, J. M., Kim, M., Park, Y. S., Choi, M., Lee, S., & Oh, H. S. (2011). Time coordinated V2I communications and handover for WAVE networks.IEEE Journal on Selected Areas on Communications, 29, 545–558.

    Article  Google Scholar 

  • Clancy, T. (2008a). Secure handover in enterprise WLANs: CAPWAP, HOKEY and IEEE802.11R.IEEE Wireless Communications, 15(5), 80–85.

    Google Scholar 

  • Clancy, T. C. (2008b). Secure handover in enterprise WLANs: CAPWAP, HOKEY and IEEE 802.11R.IEEE Wireless Communications, 15, 80–85.

    Google Scholar 

  • Cottingham, D. N., Wassell, I. J., & Harle, R. K. (2007, April 22–25). Performance of IEEE 802.11a in vehicular contexts. InIEEE Vehicular Technology Conference, Dublin, Ireland, pp. 854–858.

    Google Scholar 

  • Dai, P., Liu, K., Zhuge, Q., Sha, E. H.-M., Lee, V. C. S., & Son, S. H. (2017). Quality-of-experience-oriented autonomous intersection control in vehicular networks.IEEE Transactions on Intelligent Transportation Systems, 17, 1956–1967.

    Article  Google Scholar 

  • Datta, S., Dhar, S., Bera, R. N., & Ray, A. (2012). ANP based vertical handover algorithm for vehicular communication. InInternational Conference on Recent Advances in Information Technology.

    Google Scholar 

  • David, K., & Flach, A. (2010). Car-2-x and pedestrian safety.IEEE Vehicular Technology Magazine, 5, 70–76.

    Article  Google Scholar 

  • Deshpande, P., Kashyap, A., Sung, C., & Das, S. R. (2009, June 22–25). Predictive methods for improved vehicular WiFi access. InACM MobiSys, Krakow, Poland, pp. 263–276.

    Google Scholar 

  • Dias, J., Cardote, A., Neves, F., Sargento, S., & Oliveira, A. (2012). Seamless horizontal and vertical mobility in VANET. InIEEE Vehicular Networkingl Conference.

    Google Scholar 

  • Donoho, D. L. (2006). Compressed sensing.IEEE Transactions on Information Theory, 52(4), 1289–1306.

    Article  MathSciNet  MATH  Google Scholar 

  • DoT. (2006). US Department of Transportation. Online at:http://ops.fhwa.dot.gov

  • Drucker, J., & Angwin, J. (2002). Wi-Fi gives cell carriers static.Wall Street Journal.

    Google Scholar 

  • Emmelmann, M. (2005, September 25–28). Influence of velocity on the handover delay associated with a radio-signal-measurement-based handover decision. InIEEE Vehicular Technology Conference, Dallas, TX, USA, pp. 2282–2286.

    Google Scholar 

  • Eriksson, J., Balakrishnan, H., & Madden, S. (2008, September 14–19). Cabernet: Vehicular content delivery using WiFi. In14th ACM MobiCom, San Francisco, CA, USA, pp. 199–210.

    Google Scholar 

  • Etemadi, N., & Ashtiani, F. (2011). Throughput analysis of IEEE 802.11-based vehicular ad hoc networks.IET Communications, 5(14), 1954–1963.

    Google Scholar 

  • Ezell, S. (2010).Explaining international it application leadership: Intelligent transportation systems. Washington, DC: Information Technology and Innovation Foundation.

    Google Scholar 

  • Fall, K., & Farrell, S. (2008). DTN: An architectural retrospective.IEEE Journal on Selected Areas of Communications, 26(5), 828–836.

    Article  Google Scholar 

  • Farrell, S., Cahill, V., Geraghty, D., Humphreys, I., & McDonald, P. (2006). When TCP breaks: Delay- and disruption-tolerant networking.IEEE Internet Computing, 10(4), 72–77.

    Article  Google Scholar 

  • Fathi, H., Kobara, K., Chakraborty, S. S., Imai, H., & Prasad, R. (2005, November 28–December 2). On the impact of security on latency in WLAN 802.11b. InIEEE GLOBECOM, St. Louis, pp. 1752–1756.

    Google Scholar 

  • Fazio, M., Palazzi, C. E., Das, S., & Gerla, M. (2007, January 10–12). Facilitating real-time applications in VANETs through fast address auto-configuration. In3rd IEEE CCNC International Workshop on Networking Issues in Multimedia Entertainment, Las Vegas, NV, USA.

    Google Scholar 

  • FB-Algorithm. (2011). Forward-backward algorithm. Accessed April 1, 2011, Wikipedia online:http://en.wikipedia.org/wiki/Forward-backward_algorithm

  • Feng, J. (2009, February 1–7). Analysis, implementation and extensions of RADIUS protocol. InInternational Conference on Networking and Digital Society, Cancun, Mexico, pp. 154–157.

    Google Scholar 

  • Floris, A., Tosetti, L., & Veltri, L. (2003, May 11–15). Solutions for mobility support in DHCP-based environments. InIEEE International Conference on Communications, Anchorage, AK, USA, pp. 1043–1047.

    Google Scholar 

  • Frangiadakis, N., Kuklov, D., & Roussopoulos, N. (2007, November 26–30). PEGASUS: 802.11 connectivity at high speed. InIEEE GLOBECOM Workshops, Washington DC.

    Google Scholar 

  • Gao, W., Li, Q., Zhao, B., & Cao, G. (2012). Social-aware multicast in disruption-tolerant networks.IEEE/ACM Transactions on Networking, 20, 1553–1566.

    Article  Google Scholar 

  • Garroppo, R. G., Gazzarrini, L., Giordano, S., & Tavanti, L. (2011). Experimental assessment of the co-existence of Wi-Fi, ZigBee, and bluetooth devices. InIEEE International Symposium on World of Wireless, Mobile and Multimedia Networks, pp. 1–9.

    Google Scholar 

  • Gass, R., & Diot, C. (2010, April 6–7). Eliminating backhaul bottlenecks for opportunistically encountered Wi-Fi hotspots. InIEEE Vehicular Technology Conference, Washington, USA, pp. 1–5.

    Google Scholar 

  • Gass, R., Scott, J., & Diot, C. (2006, April 6–7). Measurements of In-Motion 802.11 networking. In7th IEEE Workshop on Mobile Computing Systems and Applications, Washington, USA, pp. 69–74.

    Google Scholar 

  • Geier, J. (2002). The BIG question: 802.11a or 802.11b?Wi-Fi Planet Online Articles.

    Google Scholar 

  • Giannoulis, A., Fiore, M., & Knightly, E. W. (2008, June 10–13). Supporting vehicular mobility in urban multi-hop wireless networks. InACM MobiSys, Breckenridge, CO, USA, pp. 54–66.

    Google Scholar 

  • Godara, L. C. (2002).Handbook of antennas in wireless communications. The Electrical Engineering and Applied Signal Processing Series. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Goel, S., & Yuan, Y. (2015). Emerging research in connected vehicles.IEEE Intelligent Transportation Systems Magazine,7(2), 6–9.

    Article  Google Scholar 

  • Goodman, D. J., & Wei, S. X. (1989, May 1–3). Factors affecting the bandwidth efficiency of packet reservation multiple access. InIEEE Vehicular Technology Conference, San Francisco, USA, pp. 292–299.

    Google Scholar 

  • Goth, G. (2008). New Wi-Fi technology racing past standards process.IEEE Distributed Systems Online, 9(10), 1.

    Article  Google Scholar 

  • Goth, G. (2011). Wi-Fi making big news waves.IEEE Internet Computing, 15(5), 7–10.

    Article  Google Scholar 

  • Grinstead, C. M., & Snell, J. L. (2007).Introduction to probability. Providence: AMS Bookstore.

    MATH  Google Scholar 

  • Guizzo, E. (2004). Netwok of traffic spies built into cars in Atlanta.IEEE Spectrum.

    Google Scholar 

  • Hadallerp, D., Keshav, S., Brecht, T., & Agarwal, S. (2007, June 11–14). Vehicular opportunistic communication under the microscope. InACM MobiSys, San Juan, Puerto Rico, pp. 206–219.

    Google Scholar 

  • Hasan, M., & Hossain, E. (2015). Distributed resource allocation in 5g cellular networks. InTowards 5G: Applications, requirements and candidate technologies. Chichester: Wiley.

    Google Scholar 

  • Hasan, S. F. (2015). A discussion on software-defined handovers in hierarchical MIPv6 networks. InIEEE International Conference on Industrial Electronics and Applications.

    Google Scholar 

  • Hasan, S. F., Ding, X., Siddique, N. H., & Chakraborty, S. (2011a). Measuring disruption in vehicular communication.IEEE Transactions on Vehicular Technology, 60, 148–159.

    Google Scholar 

  • Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2009a). Disruption model for net-on-roads. InInternational Conference on Applications of Digital Information and Web Technologies (pp. 282–287).

    Google Scholar 

  • Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2009b). Femtocell versus WiFi – A survey and comparison of architecture and performance. InInternational Conference on Wireless VITAE (pp. 916–920).

    Google Scholar 

  • Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2009c). Impact of RSS on the performance of 3GPP applications in a net-on-roads connection. In17th Telecommunications Forum, pp. 266–269.

    Google Scholar 

  • Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2010a). HMM-based modelling of roadside-to-vehicle WLAN communications. In2nd International Workshop on Communication Technologies for Vehicles, pp. 427–431.

    Google Scholar 

  • Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2010b). On evaluating the latency in handing over to EAP-enabled WLAN APs from outdoors. In7th IEEE/IET International Symposium on Communication Systems, Networks and Digital Signal Processing, pp. 278–282.

    Google Scholar 

  • Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2010c). On the effectiveness of WISPr in roadside-to-vehicle communications.IEEE Communications Letters, 14, 818–820.

    Google Scholar 

  • Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2010d). WLAN datarates achievable from roads in low and high mobility environments. InIEEE International Communications Conference Workshops, pp. 1–5.

    Google Scholar 

  • Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2012b). Developments and constraints in 802.11-based vehicular communication. Journal of Wireless Personal Communication. Springer. Vol. 69, No. 4, pp. 1261–1287.

    Google Scholar 

  • Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2011c). Extended MULE concept for traffic congestion monitoring.Journal of Wireless Personal Communications, 63(1), 65–82. Springer.

    Google Scholar 

  • Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2011d). Scanning and address allocation delays in vehicular communications.Journal of Wireless Personal Communication, 68(4), 1415–1433.

    Google Scholar 

  • Hassan, M. B., & Hassan, M. (2009). A markov chain model of streaming proxy for disconnecting vehicular networks. InIEEE Vehicular Technology Conference, pp. 1–5.

    Google Scholar 

  • Haykins, S. S. (2009).Neural networks and learning machines. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Hong, J., Park, S., & Choi, S. (2015). Novel power control and collision resolution schemes for device-to-device discovery. InPeer-to-Peer networking and applications. New York: Springer.

    Google Scholar 

  • Hossain, E., & Leung, K. K. (2008).Wireless mesh networks: Architectures and protocols. New York: Springer (illustrated).

    Google Scholar 

  • Hu, H., Wang, F., Wang, F., Jia, W., & Tang, G. (2009, June 22–26). Automatic mobile vehicle for adaptive real-time communication relay. InIEEE International Conference on Distributed Computing Systems Workshops, Genova, Italy, pp. 32–37.

    Google Scholar 

  • Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A., et al. (2006, October/November). CarTel: A distributed mobile sensor computing system. InACM SenSys, Boulder, CO, USA, pp. 125–138.

    Google Scholar 

  • Hult, R., Campos, G. R., Steinmetz, E., Hammarstrand, L., Falcone, P., & Wymeersch, H. (2017). Coordination of cooperative autonomous vehicles. InIEEE Engineering and Technology Magazine.

    Google Scholar 

  • IPerf. (2011). IPerf Tutorial. Accessed on April 1, 2011, online at:http://openmaniak.com/iperf.php

  • Jangsher, S., & Li, V. O. K. (2016). Resource allocation in moving small cell network.IEEE Transactions on Wireless Communication, 15, 4559–4570.

    Google Scholar 

  • Jiang, D., Chen, Q., & Delgrossi, L. (2007, September 15). Optimal data rate selection for vehicle safety communications. InACM VANET Workshop on Vehicular Internetworking, San Francisco, CA, USA, pp. 30–38.

    Google Scholar 

  • Jiang, D., & Delgrossi, L. (2008, May 11–14). IEEE 802.11p: Towards an international standard for wireless access in vehicular environments. InIEEE Vehicular Technology Conference, Singapore, pp. 2036–2040.

    Google Scholar 

  • Jiang, S., & Vaidya, N. (1999, August). Scheduling data broadcast to “impatient” users. In1st International ACM Workshop on Data Engineering for Wireless and Mobile Access, Seattle, USA, pp. 52–59.

    Google Scholar 

  • Jin, S., Choi, M., & Choi, S. (2009). Multiple WNIC-Based handoff in IEEE 802.11 WLANs.IEEE Communications Letters, 13(10), 752–754.

    Google Scholar 

  • Jones, L. (2017). Driverless cars: When and where.IEEE Engineering and Technology Magazine, 12(2), 36–40.

    Article  MathSciNet  Google Scholar 

  • Joseph, A. D. (2006a). Intelligent transportation systems.IEEE Pervasive Computing, 5(4), 63–67.

    Google Scholar 

  • Joseph, A. D. (2006b). Works in progress: Intelligent transportation systems.IEEE Pervasive Computing, 5(4), 63–67.

    Google Scholar 

  • Jurafsky, D., & Martin, J. H. (2009).Speech and Language Processing: An introduction to natural language processing, computational linguistics and speech recognition. Prentice Hall series in Artificial Intelligence. Upper Saddle River, NJ: Pearson.

    Google Scholar 

  • Kanellos, M., & Charny, B. (2002). PCs to be intel’s wedge into wireless. CNet, available online:http://news.cnet.com/2100-1040-957472.html

  • Khabbaz, M. J., Assi, C. M., & Fawaz, W. F. (2012a). Disruption-tolerant networking: A comprehensive survey on recent developments and persisting challenges.IEEE Communications Surveys and Tutorials, 14, 607–640.

    Google Scholar 

  • Khabbaz, M. J., Fawaz, W. F., & Assi, C. M. (2012b). Modeling and delay analysis of intermittently connected roadside communication networks.IEEE Transactions on Vehicular Technology, 61, 2698–2706.

    Google Scholar 

  • Kim, H.-S., Park, S.-H., Park, C.-S., Kim, J.-W., & Ko, S.-J. (2004, July 6–8). Selective channel scanning for fast handoff in wireless LAN using neighbour graph. InInternational Technical Conference on CSCC, Miyagi-Pref, Japan.

    Google Scholar 

  • Kim, S., Choi, S., Park, S., Lee, J., & Kim, S. (2006, January 8–12). An empirical measurements-based analysis of public WLAN handoff operations. InFirst International Conference on Communication Systems Software and Middleware, New Delhi, India, pp. 1–6.

    Google Scholar 

  • Koski, T. (2001).Hidden Markov models for bioinformatics. New York: Springer.

    Book  MATH  Google Scholar 

  • Kumar, P., Gurtov, A., Iinatti, J., & Lee, S.-G. (2014). Delegation-based robust authentication model for wireless roaming using portable communication devices.IEEE Transactions on Consumer Electronics, 60, 668–674.

    Google Scholar 

  • Kvam, P. H., & Vidakovic, B. (2007).Nonparamteric statistics with applications to science and engineering. Wiley Series in Probability and Statistics. Hoboken: Wiley Interscience.

    Chapter  Google Scholar 

  • Kwak, D., Mo, J., & Kang, M. (2009, June 7–9). Investigation of handoffs for IEEE 802.11 networks in vehicular environment. InInternational Conference on Ubiquitous and Future Networks, Hong Kong, China, pp. 89–94.

    Google Scholar 

  • Kwok, Y., & Lau, V. (2007). Wireless internet and mobile computing: Interoperability and performance. Hoboken: Wiley-IEEE Press.

    Book  Google Scholar 

  • Lee, B. G., Kim, H. G., & Park, K. H. (2002).An AAA application protocol design and service for secure wireless internet gateway roaming. Lecture Notes in Computer Science (pp. 123–135). New York: Springer.

    Google Scholar 

  • Lee, J.-K., & Hou, J. C. (2006, May 22–25). Modeling steady-state and transient behaviours of user mobility: Formulation, analysis and application. InACM MobiHoc, Florence, Italy, pp. 85–96.

    Google Scholar 

  • Lee, W., Kim, J., & Choi, S. W. (2016). New D2D peer discovery scheme based on spatial correlation of wireless channel.IEEE Transactions on Vehicular Technology, 66, 10120–10125.

    Article  Google Scholar 

  • Leontiadis, I., Costa, P., & Mascolo, C. (2010, March 15–19). Extending access point connectivity through opportunistic routing in vehicular networks. InIEEE INFOCOM, San Diego, USA, pp. 1–5.

    Google Scholar 

  • Li, W., Hu, Y., Fu, X., Lu, S., & Chen, D. (2015). Cooperative positioning and tracking in disruption tolerant networks.IEEE Transactions on Parallel and Distributed Systems, 26, 382–391.

    Article  Google Scholar 

  • Li, X., Shu, W., & Li, M. (2009). Performance evaluation of vehicle-based mobile sensor networks for traffic monitoring.IEEE Transactions on Vehicular Technology, 58(4), 1647–1653.

    Article  Google Scholar 

  • Lint, J. W. C., Hoogendoorn, S. P., & Zuylen, H. J. (2005). Accurate freeway travel time prediction with state-space neural networks under missing data.Transportation Research Part C: Emerging Technologies, 13(5/6), 347–369.

    Article  Google Scholar 

  • Luo, H., & Henry, P. (2003, December 1–5). A secure public wireless LAN access technique that supports walk-up users. InIEEE GLOBECOM, San Francisco, USA, pp. 1415–1419.

    Google Scholar 

  • Ma, X., Chen, X., & Refai, H. H. (2009). Performance and reliability of DSRC vehicular safety communication: A formal analysis.EURASIP Journal of Wireless Communication Network, 2009, 1–13.

    Article  Google Scholar 

  • Mahajan, R., Zahorjan, J., & Zill, B. (2007, August 27–31). Understanding WiFi-based connectivity from moving vehicles. InACM SIGCOMM Conference on Internet Measurement, Kyoto, Japan, pp. 321–326.

    Google Scholar 

  • Mancuso, V., Gambardella, M., & Bianchi, G. (2004, June 20–24). Improved support for streaming services in vehicular networks. InIEEE ICC, New York, pp. 4362–4366.

    Google Scholar 

  • Manodham, T., Loyola, L., Atoche, G., Hayasaka, M., & Miki, T. (2005, October 5). A novel handover scheme for reducing latency in WLANs. InAsia-Pacific Conference on Communications, pp. 1141–1144.

    Google Scholar 

  • Meneguette, R. I., Bittencourt, L. F., & Madeira, E. R. M. (2013). A seamless flow mobility management architecture for vehicular communication networks.Journal of Communications and Networks, 15, 207–216.

    Article  Google Scholar 

  • Mhatre, V., & Papagiannaki, K. (2006, June 19–22). Using smart triggers for improved user performance in 802.11 wireless networks. InACM MobiSys, Uppsala, Sweden, pp. 246–259.

    Google Scholar 

  • Miller, J. (2008). Vehicle-to-vehicle-to-infrastructure (V2V2I) intelligent transportation system architecture. InIEEE Intelligent Vehicles Symposium, pp. 715–720.

    Google Scholar 

  • Mishra, A., Shin, M., & Arbaugh, W. (2003). An empirical analysis of the IEEE 802.11 MAC layer handoff process.SIGCOMM Computer Communication Review, 33, 93–102.

    Article  Google Scholar 

  • Mohandas, B. K., & Liscano, R. (2008, October 14–17). IP address configuration in VANET using centralized DHCP. InIEEE Conference on Local Computer Networks, Montreal, Canada, pp. 608–613.

    Google Scholar 

  • Morgan, Y. L. (2010). Notes on DSRC and WAVE standards suite: Its architecture, design, and characteristics.IEEE Communications Surveys and Tutorials, 12(4), 504–518.

    Article  Google Scholar 

  • Na, W., Dao, N. N., & Cho, S. (2016). Mitigating WiFi interference to improve throughput for in-vehicle infotainment networks.IEEE Wireless Communications, 23, 22–28.

    Article  Google Scholar 

  • Nicholson, A. J., & Noble, B. D. (2008, September 14–19). Breadcrumbs: Forecasting mobile connectivity. InACM MobiCom, San Francisco, CA, USA, pp. 46–57.

    Google Scholar 

  • Ok, J., Morales, P., & Morikawa, H. (2008, September 15–18). AuthScan: Enabling fast handoff across already deployed IEEE 802.11 wireless networks. InIEEE International Symposium on Personal Indoor Mobile Radio Communications, Cannes, France, pp. 1–5.

    Google Scholar 

  • Oppenheimer, P. (2004).Top-down network design. Indianapolis: Cisco Press.

    Google Scholar 

  • Ott, J., & Kutscher, D. (2004a, May 17–19). The “Drive-thru” architecture: WLAN-based internet access on the road. InIEEE Vehicular Technology Conference, Bremen, Germany, pp. 2615–2622.

    Google Scholar 

  • Ott, J., & Kutscher, D. (2004b, May 7–11). Drive-thru internet: IEEE 802.11b for “Automobile” users. InIEEE INFOCOM, Hong Kong, pp. 362–373.

    Google Scholar 

  • Ott, J., & Kutscher, D. (2005, March 13–17). A disconnection-tolerant transport for drive-thru internet environments. InIEEE INFOCOM, Miami, USA, pp. 1849–1862.

    Google Scholar 

  • Ott, J., Kutscher, D., & Koch, M. (2005, September 25–28). Towards automated authentication for mobile users in WLAN hot-spots. InIEEE Vehicular Technology Conference, Dallas, Texas, USA, pp. 1232–1241.

    Google Scholar 

  • P-Atikom, W., Pongpaibool, P., & Thajchayapong, S. (2006, June 21–23). Estimating road traffic congestion using vehicle velocity. InInternational Conference on ITS Telecommunications, Chengdu, China, pp. 1001–1004.

    Google Scholar 

  • Paik, E. K., & Choi, Y. (2003, June 11–13). Prediction-based fast handoff for mobile WLANs. InInternational Conference on Telecommunications, Zagreb, Croatia, pp. 748–753.

    Google Scholar 

  • Panik, M. J. (2005).Advanced statistics from an elementary point of view. Amsterdam: Academic.

    MATH  Google Scholar 

  • Park, Y., & Kim, H. (2014). On the coexistence of IEEE 802.11ac and WAVE in the 5.9 GHz band.IEEE Communications Magazine, 52, 162–168.

    Google Scholar 

  • Paul, T. K. and Ogunfunmi, T. (2009). Evolution, insights and challenges of the PHY layer for the emerging ieee 802.11n amendment. IEEE Communication Surveys and Tutorials. Vol. 11, No. 4.

    Google Scholar 

  • Pereira, P. R., Casaca, A., Rodrigues, J. J. P. C., Soares, V. N. G. J., Triay, J., & O-Pastor, C. C. (2012). From delay-tolerant networks to vehicular delay-tolerant networks.IEEE Communications Surveys and Tutorials, 14, 1166–1182.

    Article  Google Scholar 

  • Posey, B. (2008). Upgrading your MCSE on windows server 2003 to windows server 2008 prep kit.Syngress (Illustrated).

    Google Scholar 

  • Qureshi, R., & Dadej, A. (2012). Handover delay analysis for cooperative ad-hoc interconnected mobile networks. InInternational Multitopic Conference.

    Google Scholar 

  • Rabiner, L. R., & Juang, B. H. (1986). An introduction to hidden Markov models.IEEE ASSP Magazine, 3, 4–16.

    Article  Google Scholar 

  • Rabiner, R. L. (1989). A tutorial on hidden Markov models and selected applications in speech processing.Proceedings of the IEEE, 77(2), 257–286.

    Article  Google Scholar 

  • Radenkovic, M., Crowcroft, J., & Rehmani, M. H. (2016). Towards low cost prototyping of mobile opportunistic disconnection tolerant networks and systems.IEEE Access, 4, 5309–5321.

    Article  Google Scholar 

  • Raghavendra, R., Belding, E. M., Papagiannaki, K., & Almeroh, K. C. (2010). Unwanted link layer traffic in large 802.11 wireless networks.IEEE Transactions on Mobile Computing, 9(9), 1212–1225.

    Article  Google Scholar 

  • Raman, B., Chebrolu, K., Gokhale, D., & Sen, S. (2009). On the feasibility of the link abstraction in wireless mesh networks.IEEE/ACM Transactions on Networking, 17(2), 528–541.

    Article  Google Scholar 

  • Ramani, I., & Savage, S. (2005, March 13–17). SyncScan: Practical fast handoff for 802.11 infrastructure networks. InIEEE INFOCOM, Miami, USA, pp. 675–684.

    Google Scholar 

  • Rappaport, T. (1996).Wireless communications – Principles and practice. Upper Saddle River, NJ: Prentice Hall, PTR.

    MATH  Google Scholar 

  • Reinward, C. C. (2007, January 9–11). Municipal broadband – The evolution of next generation wireless networks. InIEEE Radio and Wireless Symposium, Long Beach, CA, pp. 273–276.

    Google Scholar 

  • Renda, A., Guerin, S., & Arbak, E. (2009).EU-Turkey assessment negotiations. Center for European Policy Studies (CEPS).

    Google Scholar 

  • Reynolds, J. (2003).Going Wi-Fi: A practical guide to planning and building an 802.11 network (illustrated edition). Boston: Focal Press.

    Google Scholar 

  • Rodriguez, P., Chakravorty, R., & Chesterfield, J. (2004, June 6–9). MAR: A commuter router infrastructure for the mobile internet. InACM MobiSys, Boston, USA, pp. 217–230.

    Google Scholar 

  • Ross, S. M. (2002).Probability models for computer science. San Diego: Academic.

    Google Scholar 

  • Sadr, S., & Adve, R. S. (2014). Partially-distributed resource allocation in small-cell networks.IEEE Transactions on Wireless Communications, 13, 6851–6862.

    Article  Google Scholar 

  • Santa, J., Moragon, A., & G-Skarmeta, A. F. (2008, June 4–6). Experimental evaluation of a novel vehicular communication paradigm based on cellular networks. InIEEE Intelligent Vehicles Symposium, murcia, pp. 193–203.

    Google Scholar 

  • Schmidt, T., & Townsend, A. (2002). Why Wi-Fi wants to be free.Communications of the ACM, 46(5), 47–52.

    Google Scholar 

  • Schroder, C. (2008).Linux networking cookbook. Sebastopol: O’Reilly Media.

    Google Scholar 

  • Semasinghe, P., Hossain, E., & Zhu, K. (2015). An evolutionary game for distributed resource allocation in self-organizing small cells.IEEE Transactions on Mobile Computing, 14, 274–287.

    Google Scholar 

  • Shah, R., Roy, S., Jain, S., & Brunette, W. (2003, May 11). Data mules: Modelling a three-tier architecture for sparse sensor networks.1st IEEE International Workshop on Sensor Network Protocols and Applications, Anchorage, AK, USA, pp. 30–41.

    Google Scholar 

  • Shin, S., Rawat, A. S., & Schulzrinne, H. (2004, September 26–October 1). Reducing MAC layer handoff latency in IEEE 802.11 wireless LANs. InACM MobiWac, Philadelphia, USA, pp. 19–26.

    Google Scholar 

  • Shinder, T. W., Shinder, D. L., & Grasdal, M. (2005).Configuring ISA server 2004. Rockland: Syngress.

    Google Scholar 

  • Shinder, T. W., Shinder, D. L., & Grasdal, M. (2008, March 17–21). Ip address passing for VANETs. InIEEE International Conference on Pervasive Computing and Communications, Hong Kong, pp. 70–79.

    Google Scholar 

  • Sichitiu, M. L., & Kihl, M. (2008). Inter-vehicle communication systems: A survey.IEEE Communications Surveys and Tutorials, 10(2), 88–105.

    Article  Google Scholar 

  • Siddique, N. H., Hasan, S. F., & Zabir, S. M. S. (2017).Opportunistic networking: Vehicular, D2D and cognitive radio networks. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Srinivasan, K., & Levis, P. (2006, May 30–31). RSSI is under appreciated. In3rd Workshop on Embedded Networked Sensors, Cambridge, MA, USA.

    Google Scholar 

  • Stallings, W. (2008). IEEE 802.11: Moving closer to practical wireless LANs.IT Professional, 3(3), 17–23.

    Article  Google Scholar 

  • Stancil, D., Cheng, L., Henty, B., & Bai, F. (2007). Performance of 802.11p waveforms over the vehicle-to-vehicle channel at 5.9GHz. InIEEE 802.11 Task Group p Report.

    Google Scholar 

  • Stern, H. P., Mahmoud, S. A., & Wong, K.-K. (1994). A model for generating on-off patterns in conversational speech, including short silence gaps and the effects of interaction between parties.IEEE Transactions on Vehicular Technology, 43(4), 1094–1100.

    Article  Google Scholar 

  • Stewart, W. J. (2009).Probability, Markov chains, queues, and simulation: The mathematical basis of performance modeling. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  • Strom, E., Hartenstien, H., Santi, P., & Wiesbeck, W. (2010). Vehicular communications: Ubiquitous networks for sustainable mobility.Proceedings of the IEEE, 98, 1111–1112.

    Google Scholar 

  • Subramanian, V., Ramakrishnan, K. K., & Kalyanaraman, S. (2007, January 7–12). Disruption-tolerant link-level mechanisms for extreme wireless network environments. In2nd IEEE/Create-Net/ICST International Conference on COMmunication System softWAre and MiddlewaRE (COMSWARE), Bangalore, India, pp. 1–10.

    Google Scholar 

  • Sun, Y. S., Pan, Y.-C., & Chen, M. C. (2005, November/December). Fast and secure universal roaming service for mobile internet. InIEEE Globecom, Hawaii, pp. 2896–2901.

    Google Scholar 

  • Tan, T., & Bing, B. (2003).The world-wide Wi-Fi: Technological trends and business strategies. New York: Wiley Inter-Science Publication.

    Book  Google Scholar 

  • Tao, K., Li, J., & Sampalli, S. (2009). Detection of spoofed MAC addresses in 802.11 wireless networks. InE-Business and telecommunications. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Teng, J., Xu, C., Jia, W., & Xuan, D. (2009, April 19–25). D-Scan: Enabling fast and smooth handoffs in AP-dense 802.11 wireless networks. InIEEE INFOCOM, Rio de Janeiro, Brazil, pp. 2616–2620.

    Google Scholar 

  • Tommasi, F., Molendini, S., & Tricco, A. (2006, August 1). Experience-driven selective scan for 802.11 networks. InInternational Conference on Software in Telecommunications and Computer Networks, Dubrovnik, Croatia, pp. 137–141.

    Google Scholar 

  • Toor, Y., & Muhlethaler, P. (2008). Vehicle ad hoc networks: Applications and related technical issues.IEEE Communications Surveys and Tutorials, 10(3), 74–85.

    Article  Google Scholar 

  • Tsankov, B., Pachamanov, R., & Pachamanov, D. (2007). Modified brady voice traffic model for WLAN and WMAN.IEEE Electronics Letters, 43(23), 1295–1297.

    Article  Google Scholar 

  • Tufail, A., Fraser, M., Hammad, A., Hyung, K. K., & Yoo, S.-W. (2008, April 16–18). An empirical study to analyze the feasibility of WiFi for VANETs. In12th International Conference on Computer Supported Cooperative Work in Design, Suwon, pp. 553–558.

    Google Scholar 

  • Tulloch, M., Northrup, T., & Honeycutt, J. (2009). Windows 7 resource kit. Sebastopol: O’Reilly Media Inc.

    Google Scholar 

  • Uhlemann, E. (2015a). Autonomous vehicles are connecting.IEEE Vehicular Technology Magazine, 10, 22–25.

    Google Scholar 

  • Uhlemann, E. (2015b). Introducing connected vehicles.IEEE Vehicular Technology Magazine, 10, 23–31.

    Google Scholar 

  • Velayos, H., & Karlsson, G. (2004, June 20–24). Techniques to reduce the IEEE 802.11b handoff time.IEEE ICC, Paris, France, pp. 3844–3848.

    Google Scholar 

  • Vergetis, E., Pierce, E., Blanco, M., & Guerin, R. (2006, September 24–29). Packet level diversity – From theory to practice: An 802.11-based experimental investigation. In12th Annual International Conference on Mobile Computing and Networking, Los Angeles, USA, pp. 62–73.

    Google Scholar 

  • Verma, L., Fakharzadeh, M., & Choi, S. (2013). WiFi on steroids: 802.11ac and 802.11ad.IEEE Wireless Communications, 20, 30–33.

    Google Scholar 

  • Viniotis, Y. (1998).Probability and random processes for electrical engineers (International ed.). New York: McGraw-Hill.

    Google Scholar 

  • Vistumbler. (2011). Vistumbler. Accessed on April 1, 2011, online at:http://www.vistumbler.net

  • WBA. (2015). Wi-Fi roaming business case white paper.BSG Wireless Online.

    Google Scholar 

  • Wilke, T. L., Tientrakool, P., & Maxemchuk, N. F. (2009). A survey of inter-vehicle communication protocols and their applications.IEEE Communications Surveys and Tutorials, 11(2), 3–20.

    Article  Google Scholar 

  • Wu, H., Tan, K., Zhang, Y., & Zhang, Q. (2007, May 6–12). Proactive scan: Fast handoff with smart triggers for 802.11 wireless LAN.IEEE INFOCOM, Anchorage, AK, USA, pp. 749–757.

    Google Scholar 

  • Xu, Q., Wan, C., & Hu, A. (2008, December 20–22). The performance analysis of fast EAP re-authentication protocol. InInternational Symposium on Computer Science and Computational Technology, Shanghai, China, pp. 99–103.

    Google Scholar 

  • Xu, Y., & Gogarten, J. P. (2008).Computational methods for understanding bacterial and archaeal genomes. London: Imperial College Press.

    Book  Google Scholar 

  • Yang, J., Xu, Y., & Chen, C. (1997). Human action learning via hidden Markov model.IEEE Transactions on Systems, Man and Cybernetics, 27(1), 34–44.

    Article  Google Scholar 

  • Yang, X., Liu, J., Zhao, F., & Vaidya, N. H. (2004). A vehicle-to-vehicle communication protocol for cooperative collision warning. InInternational Conference on Mobile and Ubiquitous Systems: Networking and Services.

    Google Scholar 

  • Yen, L.-H., & Yang, C.-C. (2006). Mobility profiling using Markov chains for tree-based object tracking in wireless sensor networks. InIEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, pp. 220–225.

    Google Scholar 

  • Yu, X., Zhao, H., Zhang, L., Wu, S., Krishnamachari, B., & Li, V. K. (2010). Cooperative sensing and compression in vehicular sensor networks for urban monitoring. InIEEE International Communications Conference.

    Google Scholar 

  • Zhang, C., Lin, X., Lu, R., & Ho, P.-H. (2008a, May 19–23). RAISE: An efficient RSU-aided message authentication scheme in vehicular communication networks. InIEEE ICC, Beijing, China, pp. 1451–1457.

    Google Scholar 

  • Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wang, X., & Quek, T. Q. S. (2015). Resource allocation for cognitive small cell networks: A cooperative bargaining game theoretic approach.IEEE Transactions on Wireless Communications, 14, 3481–3493.

    Article  Google Scholar 

  • Zhang, J., Tan, K., Zhao, J., Wu, H., & Zhang, Y. (2008b, April 13–18). A practical SNR-guided rate adaptation. InIEEE INFOCOM, San Francisco, California, USA, pp. 146–150.

    Google Scholar 

  • Zhang, S., Wu, J., Lu, S. (2016). Distributed workload dissemination for makespan minimization in disruption tolerant networks.IEEE Transactions on Mobile Computing, 15, 1661–1673.

    Article  Google Scholar 

  • Zhang, Y., Zhao, J., & Cao, G. (2007, September 10). On scheduling vehicle-roadside data access. In4th ACM International Workshop on Vehicular and Ad Hoc Networks, Montreal, Canada, pp. 9–18.

    Google Scholar 

  • Zheng, X., & Sarikaya, B. (2009). Handover keying and its uses.IEEE Network, 23, 27–34.

    Article  Google Scholar 

  • Zhou, M., Qu, X., & Jin, S. (2017). On the impact of cooperative autonomous vehicles in improving freeway merging: A modified intelligent driver model-based approach.IEEE Transactions on Intelligent Transportation Systems, 18, 1422–1428.

    Google Scholar 

  • Zhu, H., Li, M., Chlamtac, I., & Prabhakaran, B. (2004). A survey of quality of service in IEEE 802.11 networks.IEEE Wireless Communications, 11, 6–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hasan, S.F., Siddique, N., Chakraborty, S. (2018). Epilogue. In: Intelligent Transportation Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-64057-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64057-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64056-3

  • Online ISBN: 978-3-319-64057-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics