Skip to main content

Performance Indicators of Vehicular Communication

  • Chapter
  • First Online:
Intelligent Transportation Systems

Abstract

Various WLAN parameters have specific significance with regard to their application domain. Parameters that affect WLAN performance in the indoor environments may be different from those that are important in vehicular communication. Performance of WLAN in a particular application mainly depends on the proper evaluation of the associated parameters. The parameters such as the beacon frame interval, Short Inter Frame Space (SIFS), DCF Inter Frame Space (DIFS), Contention Window size, for example, are specific to the general purpose use of WLANs. While these parameters are also important for R2V communications, there are two PHY layer parameters that are important in any kind of wireless communications, namely signal strength and data rate. It is obvious that R2V communications shall be rendered ineffective without the availability of strong signal strength and high data rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A mobile node is in vehicular setup when it is placed outdoors, such as on the roads.

  2. 2.

    The mobile node was not equipped with the GPS utility during the tests and the information on the location of APs was not collected to ensure privacy.

References

  • Behzad, A. (2002). Wireless LAN radios: System definition to transistor design. New York: Wiley-IEEE.

    Google Scholar 

  • Caceres, M., Sottile, F., & Spirito, M. A. (2009, April 26–29). WLAN-based real time vehicle locating system. In IEEE Vehicular Technology Conference, Barcelona, Spain, pp. 1–5.

    Google Scholar 

  • Chakraborty, S., Frankkila, T., Peisa, J., & Synnergren, P. (2007). IMS multimedia telephony over cellular systems. New York: Wiley.

    Book  Google Scholar 

  • Cho, Y. (2007). Estimating velocity fields on a freeway from low-resolution videos. IEEE Transactions on Intelligent Transportation Systems, 7(4), 463–469.

    Article  Google Scholar 

  • Cottingham, D. N., Wassell, I. J., & Harle, R. K. (2007, April 22–25). Performance of IEEE 802.11a in vehicular contexts. In IEEE Vehicular Technology Conference, Dublin, Ireland, pp. 854–858.

    Google Scholar 

  • DoT. (2006). US Department of Transportation. Online at: http://ops.fhwa.dot.gov

  • Eriksson, J., Balakrishnan, H., & Madden, S. (2008, September 14–19). Cabernet: Vehicular content delivery using WiFi. In 14th ACM MobiCom, San Francisco, CA, USA, pp. 199–210.

    Google Scholar 

  • Gass, R., Scott, J., & Diot, C. (2006, April 6–7). Measurements of In-Motion 802.11 networking. In 7th IEEE Workshop on Mobile Computing Systems and Applications, Washington, USA, pp. 69–74.

    Google Scholar 

  • Geier, J. (2002). The BIG question: 802.11a or 802.11b? Wi-Fi Planet Online Articles.

    Google Scholar 

  • Godara, L. C. (2002). Handbook of antennas in wireless communications. The Electrical Engineering and Applied Signal Processing Series. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Hadallerp, D., Keshav, S., Brecht, T., & Agarwal, S. (2007, June 11–14). Vehicular opportunistic communication under the microscope. In ACM MobiSys, San Juan, Puerto Rico, pp. 206–219.

    Google Scholar 

  • Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2009c). Impact of RSS on the performance of 3GPP applications in a net-on-roads connection. In 17th Telecommunications Forum, pp. 266–269.

    Google Scholar 

  • Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2010d). WLAN datarates achievable from roads in low and high mobility environments. In IEEE International Communications Conference Workshops, pp. 1–5.

    Google Scholar 

  • Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2011c). Extended MULE concept for traffic congestion monitoring. Journal of Wireless Personal Communications, 63(1), 65–82. Springer.

    Google Scholar 

  • Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2011d). Scanning and address allocation delays in vehicular communications. Journal of Wireless Personal Communication, 68(4), 1415–1433.

    Google Scholar 

  • Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A., et al. (2006, October/November). CarTel: A distributed mobile sensor computing system. In ACM SenSys, Boulder, CO, USA, pp. 125–138.

    Google Scholar 

  • IPerf. (2011). IPerf Tutorial. Accessed on April 1, 2011, online at: http://openmaniak.com/iperf.php

  • Jiang, D., Chen, Q., & Delgrossi, L. (2007, September 15). Optimal data rate selection for vehicle safety communications. In ACM VANET Workshop on Vehicular Internetworking, San Francisco, CA, USA, pp. 30–38.

    Google Scholar 

  • Joseph, A. D. (2006b). Works in progress: Intelligent transportation systems. IEEE Pervasive Computing, 5(4), 63–67.

    Google Scholar 

  • Li, X., Shu, W., & Li, M. (2009). Performance evaluation of vehicle-based mobile sensor networks for traffic monitoring. IEEE Transactions on Vehicular Technology, 58(4), 1647–1653.

    Article  Google Scholar 

  • Mishra, A., Shin, M., & Arbaugh, W. (2003). An empirical analysis of the IEEE 802.11 MAC layer handoff process. SIGCOMM Computer Communication Review, 33, 93–102.

    Article  Google Scholar 

  • Na, W., Dao, N. N., & Cho, S. (2016). Mitigating WiFi interference to improve throughput for in-vehicle infotainment networks. IEEE Wireless Communications, 23, 22–28.

    Article  Google Scholar 

  • Ott, J., & Kutscher, D. (2004a, May 17–19). The “Drive-thru” architecture: WLAN-based internet access on the road. In IEEE Vehicular Technology Conference, Bremen, Germany, pp. 2615–2622.

    Google Scholar 

  • Ott, J., & Kutscher, D. (2004b, May 7–11). Drive-thru internet: IEEE 802.11b for “Automobile” users. In IEEE INFOCOM, Hong Kong, pp. 362–373.

    Google Scholar 

  • Ott, J., & Kutscher, D. (2005, March 13–17). A disconnection-tolerant transport for drive-thru internet environments. In IEEE INFOCOM, Miami, USA, pp. 1849–1862.

    Google Scholar 

  • P-Atikom, W., Pongpaibool, P., & Thajchayapong, S. (2006, June 21–23). Estimating road traffic congestion using vehicle velocity. In International Conference on ITS Telecommunications, Chengdu, China, pp. 1001–1004.

    Google Scholar 

  • Raman, B., Chebrolu, K., Gokhale, D., & Sen, S. (2009). On the feasibility of the link abstraction in wireless mesh networks. IEEE/ACM Transactions on Networking, 17(2), 528–541.

    Article  Google Scholar 

  • Rappaport, T. (1996). Wireless communications – Principles and practice. Upper Saddle River, NJ: Prentice Hall, PTR.

    MATH  Google Scholar 

  • Shah, R., Roy, S., Jain, S., & Brunette, W. (2003, May 11). Data mules: Modelling a three-tier architecture for sparse sensor networks. 1st IEEE International Workshop on Sensor Network Protocols and Applications, Anchorage, AK, USA, pp. 30–41.

    Google Scholar 

  • Shin, S., Rawat, A. S., & Schulzrinne, H. (2004, September 26–October 1). Reducing MAC layer handoff latency in IEEE 802.11 wireless LANs. In ACM MobiWac, Philadelphia, USA, pp. 19–26.

    Google Scholar 

  • Srinivasan, K., & Levis, P. (2006, May 30–31). RSSI is under appreciated. In 3rd Workshop on Embedded Networked Sensors, Cambridge, MA, USA.

    Google Scholar 

  • Tao, K., Li, J., & Sampalli, S. (2009). Detection of spoofed MAC addresses in 802.11 wireless networks. In E-Business and telecommunications. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Vistumbler. (2011). Vistumbler. Accessed on April 1, 2011, online at: http://www.vistumbler.net

  • Zhang, J., Tan, K., Zhao, J., Wu, H., & Zhang, Y. (2008b, April 13–18). A practical SNR-guided rate adaptation. In IEEE INFOCOM, San Francisco, California, USA, pp. 146–150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hasan, S.F., Siddique, N., Chakraborty, S. (2018). Performance Indicators of Vehicular Communication. In: Intelligent Transportation Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-64057-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64057-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64056-3

  • Online ISBN: 978-3-319-64057-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics