Skip to main content

Basics of Vehicular Communication

  • Chapter
  • First Online:
Book cover Intelligent Transportation Systems

Abstract

Due to the recent advances in the wireless technology and widespread use of 802.11 networks, WLAN-based vehicular communication has attracted significant research attention. 802.11-based vehicular communication is a challenging research area with several associated issues. This book is concerned with two of these issues, namely disruption and handover delay. Recall from Sect. 1.2.2 that vehicular communication is classified as V2V and R2V communications. In V2V communications, since vehicles do not communicate with the roadside APs, unplanned deployment of APs is an irrelevant issue. Similarly, since vehicles in V2V scenario do not connect to the APs at all, the delay in handing over to APs is also of little interest. The tolerance of disruption and the associated handover issues are important considerations for R2V communications only and have little relevance to V2V paradigm. Therefore, for the rest of this book, the primary focus stays on 802.11-based R2V communications only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Sects. 7.2.2 and 7.3.1 for detailed discussion on DHCP and its associated delay.

References

  • A-Ghazaleh, H., & Alfa, A. S. (2008, May 11–14). Mobility prediction and spatial-temporal traffic estimation in wireless networks. In IEEE Vehicular Technology Conference, Singapore, pp. 2203–2207.

    Google Scholar 

  • A-Ghazaleh, H., & Alfa, A. S. (2010). Application of mobility prediction in wireless networks using markov renewal theory. IEEE Transactions on Vehicular Technology, 59(2), 46–57.

    Google Scholar 

  • Aajami, M., & Suk, J. B. (2015). Optimal TXOP sharing in IEEE 802.11ac. IEEE Communications Letters, 19, 1141–1144.

    Article  Google Scholar 

  • Altunbasak, H., & Owen, H. (2004, March 26–28). Alternative pair-wise key exchange protocols for robust security networks (IEEE 802.11i) in wireless LANs. In IEEE Southeast Conference, Nashille, TN, USA, pp. 3–9.

    Google Scholar 

  • Amdouni, I., & Filali, F. (2009, October 28–30). Intelligent strategies of access point selection for vehicle to infrastructure opportunistic communications. In IEEE Vehicular Networking Conference, Tokyo, Japan, pp. 1–8.

    Google Scholar 

  • Au, E. (2016). Exciting projects for PHY and MAC layers of IEEE 802.11. IEEE Vehicular Technology Magazine, 11, 79–81.

    Article  Google Scholar 

  • Baccelli, E., Jacquet, P., Mans, B., & Rodolakis, G. (2012). Highway vehicular delay tolerant networks: Information propagation speed properties. IEEE Transactions on Information Theory, 58, 1743–1756.

    Article  MathSciNet  MATH  Google Scholar 

  • Balasubramanian, A., Mahajan, R., Venkataramani, A., Levine, B. N., & Zahorjan, J. (2008, August 17–22). Interactive WiFi connectivity for moving vehicles. In ACM SIGCOMM, Seattle, USA, pp. 427–438.

    Google Scholar 

  • Balasubramanian, A., Zhou, Y., Croft, W. B., Levine, B. N., & Venlataramani, A. (2007, September 14). Web search from a bus. In ACM CHANTS, Montreal, Canada, pp. 59–66.

    Google Scholar 

  • Banda, L., Mzyece, M., & Noel, G. (2013a). An analysis of handover probability and data throughput in vehicular networks. In Pan African International Conference on Information Science, Computing and Telecommunications.

    Google Scholar 

  • Banda, L., Mzyece, M., & Noel, G. (2013b). Fast handover management in IP-based vehicular networks. In IEEE International Conference on Industrial Technology.

    Google Scholar 

  • Bejarano, O., Knightly, E. W., & Park, M. (2013). IEEE 802.11ac: From Channelization to Multi-User MIMO. IEEE Communications Magazine, 51, 84–90.

    Article  Google Scholar 

  • Bilstrup, K., Uhlemann, E., Strom, E. G., & Bilstrup, U. (2008, September 21–24). Evaluation of the IEEE 802.11p MAC method for vehicle-to-vehicle communication. In IEEE Vehicular Technology Conference, Calgary, pp. 1–5.

    Google Scholar 

  • Borisov, N., Goldberg, I., & Wagner, D. (2001, July 16–21). Intercepting mobile communications: The insecurity of 802.11. In International Conference on Mobile Computing and Networking, Rome, Italy, pp. 180–189.

    Google Scholar 

  • Cao, Y., Sun, Z., & Riaz, M. (2012). Reach-and-spread: A historical geographic routing for delay/disruption tolerant networks. IET Networks, 1, 163–170.

    Article  Google Scholar 

  • Cao, Y., Sun, Z., Wang, N., Cruickshank, H., & Ahmad, N. (2013). A reliable and efficient geographic routing scheme for delay/disruption tolerant networks. IEEE Wireless Communication Letters, 2, 603–606.

    Article  Google Scholar 

  • Cardenas, L. R., Boutabia, M., & Afifi, H. (2008, June 29–July 5). Infrastructure-based approach for fast and seamless handovers. In 3rd International Conference on Digital Communications, Bucharest, Romania, pp. 105–109.

    Google Scholar 

  • Chao, S.-J., Zhang, J.-M., & Tuan, C.-C. (2010, June 16). Hierarchical IP distribution mechanism for VANET. In International Conference on Ubiquitous and Future Networks, Jeju, South Korea, pp. 349–354.

    Google Scholar 

  • Chen, J.-C., & Wang, Y.-P. (2005). Extensible authentication protocol (EAP) and IEEE 802.1x: Tutorial and empirical experience. IEEE Communications Magazine, 43, 26–32.

    Google Scholar 

  • Chen, J.-J., Tseng, Y.-C., & Lee, H.-W. (2007). A seamless handoff mechanism for DHCP-based IEEE 802.11 WLANs. IEEE Communications Letters, 11(8), 665–667.

    Article  Google Scholar 

  • Chen, X., & Qiao, D. (2010, March 15–19). HaND: Fast handoff with null Dwell time for IEEE 802.11 networks. In IEEE INFOCOM, San Diego, USA, pp. 1–9.

    Google Scholar 

  • Chen, Y., Kowalik, K., & Davis, M. (2009, November 13–15). MeshScan: Performance of passive handoff and active handoff. In International Conference on Wireless Communications and Signal Processing, Nanjing, China, pp. 1–5.

    Google Scholar 

  • Choi, H.-H., Song, O., Park, Y.-K., & Lee, J.-R. (2010). Performance evaluation of opportunistic vertical handover considering on-off characteristics of VoIP traffic. IEEE Transactions on Vehicular Technology, 59(6), 3115–3121.

    Article  Google Scholar 

  • Chung, C., Jung, Y., & Kim, J. (2015). Saturation throughput analysis of IEEE 802.11ac TXOP sharing mode. IET Electronics Letters, 51, 2164–2166.

    Article  Google Scholar 

  • Chung, J. M., Kim, M., Park, Y. S., Choi, M., Lee, S., & Oh, H. S. (2011). Time coordinated V2I communications and handover for WAVE networks. IEEE Journal on Selected Areas on Communications, 29, 545–558.

    Article  Google Scholar 

  • Clancy, T. (2008a). Secure handover in enterprise WLANs: CAPWAP, HOKEY and IEEE802.11R. IEEE Wireless Communications, 15(5), 80–85.

    Google Scholar 

  • Clancy, T. C. (2008b). Secure handover in enterprise WLANs: CAPWAP, HOKEY and IEEE 802.11R. IEEE Wireless Communications, 15, 80–85.

    Google Scholar 

  • Datta, S., Dhar, S., Bera, R. N., & Ray, A. (2012). ANP based vertical handover algorithm for vehicular communication. In International Conference on Recent Advances in Information Technology.

    Google Scholar 

  • Deshpande, P., Kashyap, A., Sung, C., & Das, S. R. (2009, June 22–25). Predictive methods for improved vehicular WiFi access. In ACM MobiSys, Krakow, Poland, pp. 263–276.

    Google Scholar 

  • Dias, J., Cardote, A., Neves, F., Sargento, S., & Oliveira, A. (2012). Seamless horizontal and vertical mobility in VANET. In IEEE Vehicular Networkingl Conference.

    Google Scholar 

  • Emmelmann, M. (2005, September 25–28). Influence of velocity on the handover delay associated with a radio-signal-measurement-based handover decision. In IEEE Vehicular Technology Conference, Dallas, TX, USA, pp. 2282–2286.

    Google Scholar 

  • Eriksson, J., Balakrishnan, H., & Madden, S. (2008, September 14–19). Cabernet: Vehicular content delivery using WiFi. In 14th ACM MobiCom, San Francisco, CA, USA, pp. 199–210.

    Google Scholar 

  • Etemadi, N., & Ashtiani, F. (2011). Throughput analysis of IEEE 802.11-based vehicular ad hoc networks. IET Communications, 5(14), 1954–1963.

    Article  MathSciNet  Google Scholar 

  • Fathi, H., Kobara, K., Chakraborty, S. S., Imai, H., & Prasad, R. (2005, November 28–December 2). On the impact of security on latency in WLAN 802.11b. In IEEE GLOBECOM, St. Louis, pp. 1752–1756.

    Google Scholar 

  • Fazio, M., Palazzi, C. E., Das, S., & Gerla, M. (2007, January 10–12). Facilitating real-time applications in VANETs through fast address auto-configuration. In 3rd IEEE CCNC International Workshop on Networking Issues in Multimedia Entertainment, Las Vegas, NV, USA.

    Google Scholar 

  • Floris, A., Tosetti, L., & Veltri, L. (2003, May 11–15). Solutions for mobility support in DHCP-based environments. In IEEE International Conference on Communications, Anchorage, AK, USA, pp. 1043–1047.

    Google Scholar 

  • Frangiadakis, N., Kuklov, D., & Roussopoulos, N. (2007, November 26–30). PEGASUS: 802.11 connectivity at high speed. In IEEE GLOBECOM Workshops, Washington DC.

    Google Scholar 

  • Gao, W., Li, Q., Zhao, B., & Cao, G. (2012). Social-aware multicast in disruption-tolerant networks. IEEE/ACM Transactions on Networking, 20, 1553–1566.

    Article  Google Scholar 

  • Giannoulis, A., Fiore, M., & Knightly, E. W. (2008, June 10–13). Supporting vehicular mobility in urban multi-hop wireless networks. In ACM MobiSys, Breckenridge, CO, USA, pp. 54–66.

    Google Scholar 

  • Goth, G. (2008). New Wi-Fi technology racing past standards process. IEEE Distributed Systems Online, 9(10), 1.

    Article  Google Scholar 

  • Goth, G. (2011). Wi-Fi making big news waves. IEEE Internet Computing, 15(5), 7–10.

    Article  Google Scholar 

  • Hasan, S. F. (2015). A discussion on software-defined handovers in hierarchical MIPv6 networks. In IEEE International Conference on Industrial Electronics and Applications.

    Google Scholar 

  • Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2012b). Developments and constraints in 802.11-based vehicular communication. Journal of Wireless Personal Communication. Springer. Vol. 69, No. 4, pp. 1261–1287.

    Google Scholar 

  • Hassan, M. B., & Hassan, M. (2009). A markov chain model of streaming proxy for disconnecting vehicular networks. In IEEE Vehicular Technology Conference, pp. 1–5.

    Google Scholar 

  • Hu, H., Wang, F., Wang, F., Jia, W., & Tang, G. (2009, June 22–26). Automatic mobile vehicle for adaptive real-time communication relay. In IEEE International Conference on Distributed Computing Systems Workshops, Genova, Italy, pp. 32–37.

    Google Scholar 

  • Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A., et al. (2006, October/November). CarTel: A distributed mobile sensor computing system. In ACM SenSys, Boulder, CO, USA, pp. 125–138.

    Google Scholar 

  • Jiang, D., & Delgrossi, L. (2008, May 11–14). IEEE 802.11p: Towards an international standard for wireless access in vehicular environments. In IEEE Vehicular Technology Conference, Singapore, pp. 2036–2040.

    Google Scholar 

  • Jin, S., Choi, M., & Choi, S. (2009). Multiple WNIC-Based handoff in IEEE 802.11 WLANs. IEEE Communications Letters, 13(10), 752–754.

    Article  Google Scholar 

  • Khabbaz, M. J., Assi, C. M., & Fawaz, W. F. (2012a). Disruption-tolerant networking: A comprehensive survey on recent developments and persisting challenges. IEEE Communications Surveys and Tutorials, 14, 607–640.

    Google Scholar 

  • Khabbaz, M. J., Fawaz, W. F., & Assi, C. M. (2012b). Modeling and delay analysis of intermittently connected roadside communication networks. IEEE Transactions on Vehicular Technology, 61, 2698–2706.

    Google Scholar 

  • Kim, H.-S., Park, S.-H., Park, C.-S., Kim, J.-W., & Ko, S.-J. (2004, July 6–8). Selective channel scanning for fast handoff in wireless LAN using neighbour graph. In International Technical Conference on CSCC, Miyagi-Pref, Japan.

    Google Scholar 

  • Kwak, D., Mo, J., & Kang, M. (2009, June 7–9). Investigation of handoffs for IEEE 802.11 networks in vehicular environment. In International Conference on Ubiquitous and Future Networks, Hong Kong, China, pp. 89–94.

    Google Scholar 

  • Lee, J.-K., & Hou, J. C. (2006, May 22–25). Modeling steady-state and transient behaviours of user mobility: Formulation, analysis and application. In ACM MobiHoc, Florence, Italy, pp. 85–96.

    Google Scholar 

  • Leontiadis, I., Costa, P., & Mascolo, C. (2010, March 15–19). Extending access point connectivity through opportunistic routing in vehicular networks. In IEEE INFOCOM, San Diego, USA, pp. 1–5.

    Google Scholar 

  • Li, W., Hu, Y., Fu, X., Lu, S., & Chen, D. (2015). Cooperative positioning and tracking in disruption tolerant networks. IEEE Transactions on Parallel and Distributed Systems, 26, 382–391.

    Article  Google Scholar 

  • Luo, H., & Henry, P. (2003, December 1–5). A secure public wireless LAN access technique that supports walk-up users. In IEEE GLOBECOM, San Francisco, USA, pp. 1415–1419.

    Google Scholar 

  • Ma, X., Chen, X., & Refai, H. H. (2009). Performance and reliability of DSRC vehicular safety communication: A formal analysis. EURASIP Journal of Wireless Communication Network, 2009, 1–13.

    Article  Google Scholar 

  • Mahajan, R., Zahorjan, J., & Zill, B. (2007, August 27–31). Understanding WiFi-based connectivity from moving vehicles. In ACM SIGCOMM Conference on Internet Measurement, Kyoto, Japan, pp. 321–326.

    Google Scholar 

  • Mancuso, V., Gambardella, M., & Bianchi, G. (2004, June 20–24). Improved support for streaming services in vehicular networks. In IEEE ICC, New York, pp. 4362–4366.

    Google Scholar 

  • Manodham, T., Loyola, L., Atoche, G., Hayasaka, M., & Miki, T. (2005, October 5). A novel handover scheme for reducing latency in WLANs. In Asia-Pacific Conference on Communications, pp. 1141–1144.

    Google Scholar 

  • Meneguette, R. I., Bittencourt, L. F., & Madeira, E. R. M. (2013). A seamless flow mobility management architecture for vehicular communication networks. Journal of Communications and Networks, 15, 207–216.

    Article  Google Scholar 

  • Mhatre, V., & Papagiannaki, K. (2006, June 19–22). Using smart triggers for improved user performance in 802.11 wireless networks. In ACM MobiSys, Uppsala, Sweden, pp. 246–259.

    Google Scholar 

  • Mohandas, B. K., & Liscano, R. (2008, October 14–17). IP address configuration in VANET using centralized DHCP. In IEEE Conference on Local Computer Networks, Montreal, Canada, pp. 608–613.

    Google Scholar 

  • Morgan, Y. L. (2010). Notes on DSRC and WAVE standards suite: Its architecture, design, and characteristics. IEEE Communications Surveys and Tutorials, 12(4), 504–518.

    Article  Google Scholar 

  • Nicholson, A. J., & Noble, B. D. (2008, September 14–19). Breadcrumbs: Forecasting mobile connectivity. In ACM MobiCom, San Francisco, CA, USA, pp. 46–57.

    Google Scholar 

  • Ok, J., Morales, P., & Morikawa, H. (2008, September 15–18). AuthScan: Enabling fast handoff across already deployed IEEE 802.11 wireless networks. In IEEE International Symposium on Personal Indoor Mobile Radio Communications, Cannes, France, pp. 1–5.

    Google Scholar 

  • Ott, J., & Kutscher, D. (2004a, May 17–19). The “Drive-thru” architecture: WLAN-based internet access on the road. In IEEE Vehicular Technology Conference, Bremen, Germany, pp. 2615–2622.

    Google Scholar 

  • Ott, J., & Kutscher, D. (2004b, May 7–11). Drive-thru internet: IEEE 802.11b for “Automobile” users. In IEEE INFOCOM, Hong Kong, pp. 362–373.

    Google Scholar 

  • Ott, J., Kutscher, D., & Koch, M. (2005, September 25–28). Towards automated authentication for mobile users in WLAN hot-spots. In IEEE Vehicular Technology Conference, Dallas, Texas, USA, pp. 1232–1241.

    Google Scholar 

  • Paik, E. K., & Choi, Y. (2003, June 11–13). Prediction-based fast handoff for mobile WLANs. In International Conference on Telecommunications, Zagreb, Croatia, pp. 748–753.

    Google Scholar 

  • Park, Y., & Kim, H. (2014). On the coexistence of IEEE 802.11ac and WAVE in the 5.9 GHz band. IEEE Communications Magazine, 52, 162–168.

    Google Scholar 

  • Paul, T. K. and Ogunfunmi, T. (2009). Evolution, insights and challenges of the PHY layer for the emerging ieee 802.11n amendment. IEEE Communication Surveys and Tutorials. Vol. 11, No. 4.

    Google Scholar 

  • Pereira, P. R., Casaca, A., Rodrigues, J. J. P. C., Soares, V. N. G. J., Triay, J., & O-Pastor, C. C. (2012). From delay-tolerant networks to vehicular delay-tolerant networks. IEEE Communications Surveys and Tutorials, 14, 1166–1182.

    Article  Google Scholar 

  • Qureshi, R., & Dadej, A. (2012). Handover delay analysis for cooperative ad-hoc interconnected mobile networks. In International Multitopic Conference.

    Google Scholar 

  • Ramani, I., & Savage, S. (2005, March 13–17). SyncScan: Practical fast handoff for 802.11 infrastructure networks. In IEEE INFOCOM, Miami, USA, pp. 675–684.

    Google Scholar 

  • Rodriguez, P., Chakravorty, R., & Chesterfield, J. (2004, June 6–9). MAR: A commuter router infrastructure for the mobile internet. In ACM MobiSys, Boston, USA, pp. 217–230.

    Google Scholar 

  • Shin, S., Rawat, A. S., & Schulzrinne, H. (2004, September 26–October 1). Reducing MAC layer handoff latency in IEEE 802.11 wireless LANs. In ACM MobiWac, Philadelphia, USA, pp. 19–26.

    Google Scholar 

  • Stancil, D., Cheng, L., Henty, B., & Bai, F. (2007). Performance of 802.11p waveforms over the vehicle-to-vehicle channel at 5.9GHz. In IEEE 802.11 Task Group p Report.

    Google Scholar 

  • Subramanian, V., Ramakrishnan, K. K., & Kalyanaraman, S. (2007, January 7–12). Disruption-tolerant link-level mechanisms for extreme wireless network environments. In 2nd IEEE/Create-Net/ICST International Conference on COMmunication System softWAre and MiddlewaRE (COMSWARE), Bangalore, India, pp. 1–10.

    Google Scholar 

  • Teng, J., Xu, C., Jia, W., & Xuan, D. (2009, April 19–25). D-Scan: Enabling fast and smooth handoffs in AP-dense 802.11 wireless networks. In IEEE INFOCOM, Rio de Janeiro, Brazil, pp. 2616–2620.

    Google Scholar 

  • Tommasi, F., Molendini, S., & Tricco, A. (2006, August 1). Experience-driven selective scan for 802.11 networks. In International Conference on Software in Telecommunications and Computer Networks, Dubrovnik, Croatia, pp. 137–141.

    Google Scholar 

  • Velayos, H., & Karlsson, G. (2004, June 20–24). Techniques to reduce the IEEE 802.11b handoff time. IEEE ICC, Paris, France, pp. 3844–3848.

    Google Scholar 

  • Verma, L., Fakharzadeh, M., & Choi, S. (2013). WiFi on steroids: 802.11ac and 802.11ad. IEEE Wireless Communications, 20, 30–33.

    Article  Google Scholar 

  • Wu, H., Tan, K., Zhang, Y., & Zhang, Q. (2007, May 6–12). Proactive scan: Fast handoff with smart triggers for 802.11 wireless LAN. IEEE INFOCOM, Anchorage, AK, USA, pp. 749–757.

    Google Scholar 

  • Xu, Q., Wan, C., & Hu, A. (2008, December 20–22). The performance analysis of fast EAP re-authentication protocol. In International Symposium on Computer Science and Computational Technology, Shanghai, China, pp. 99–103.

    Google Scholar 

  • Zhang, C., Lin, X., Lu, R., & Ho, P.-H. (2008a, May 19–23). RAISE: An efficient RSU-aided message authentication scheme in vehicular communication networks. In IEEE ICC, Beijing, China, pp. 1451–1457.

    Google Scholar 

  • Zheng, X., & Sarikaya, B. (2009). Handover keying and its uses. IEEE Network, 23, 27–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hasan, S.F., Siddique, N., Chakraborty, S. (2018). Basics of Vehicular Communication. In: Intelligent Transportation Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-64057-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64057-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64056-3

  • Online ISBN: 978-3-319-64057-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics