Skip to main content

Lactate: Metabolism, Pathophysiology

  • Chapter
  • First Online:
Book cover Metabolic Disorders and Critically Ill Patients

Abstract

To understand the pathophysiology of hyperlactatemia requires to know its metabolism. Lactate metabolism is complex and depends on organs and their energetic condition. For a long time, hyperlactatemia was considered as toxic end waste, associated with lactic acidosis and tissue hypoxia-anaerobia. All these notions remain deeply anchored in our spirits but are frequently erroneous. Hyperlactatemia is really a good marker of poor outcome and a warning of energy crisis but is also a witness of a metabolic adaptative response. In many physiological and pathological conditions, lactate appears as an energetic shuttle and an efficient source of fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. De Backer D (2003) Lactic acidosis. Intensive Care Med 29:699–702

    Article  PubMed  Google Scholar 

  2. Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558:5–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Leverve X (1999) Lactic acidosis a new insight. Minerva Anesthesiol 65:205–209

    CAS  Google Scholar 

  4. Bakker J, Mijsten MWN, Jansen TC (2013) Clinical use of lactate monitoring in critically ill patients. Ann Intensive Care 3:12

    Article  PubMed  PubMed Central  Google Scholar 

  5. Reddy AJ, Lam SW, Bauer SR, Guzman JA (2015) Lactic acidosis: clinical implications and management strategies. Cleveland Clin J Med 82:615–624

    Article  Google Scholar 

  6. Halestrap A, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343:281–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garcia-Alvarez M, Marik P, Bellomo R (2014) Sepsis-associated hyperlactatemia. Crit Care 18:503

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chioléro R, Tappy L, Gillet M et al (1999) Effect of a major hepatectomy on glucose and lactate metabolism. Ann Surg 4:505–513

    Article  Google Scholar 

  9. Carvalho RA, Jones JG, McGuirk C, Sherry AD, Malloy CR (2002) Hepatic gluconeogenesis and Krebs cycle fluxes in CCl4 model of acute liver failure. NMR Biomed 15:45–51

    Article  CAS  PubMed  Google Scholar 

  10. Tapia P, Soto D, Bruhn A et al (2015) Impairment of exogenous lactate clearance in experimental hyperdynamic septic shock is not related to total liver hypoperfusion. Ann Intensive Care 19:188

    Google Scholar 

  11. Joseph SE, Heaton N, Potter D, Pernet A, Umpleby MA, Amiel SA (2000) Renal glucose production compensates for the liver during the anhepatic phase of liver transplantation. Diabetes 49:450–456

    Article  CAS  PubMed  Google Scholar 

  12. Van Hall G (2010) Lactate kinetics in human tissues at rest and during exercise. Acta Physiol 199:499–508

    Article  Google Scholar 

  13. Leverve XM (1999) From tissue perfusion to metabolic marker: assessing organ competition and co-operation in critically ill patients. Intensive Care Med 25:890–892

    Article  CAS  PubMed  Google Scholar 

  14. Schurr A, Payne RS, Miller JJ, Rigor BM (1997) Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation. J Neurochem 69:423–426

    Article  CAS  PubMed  Google Scholar 

  15. Lavery RF, Livingston DH, Tortella BJ, Sambol JT, Slomovitz BM, Siegel JH (2000) The utility of venous lactate to triage injured patients in the trauma center. J Am Coll Surg 190:656–664

    Article  CAS  PubMed  Google Scholar 

  16. Boldt J, Kumle B, Suttner S, Haisch G (2001) Point-of-care (POC) testing of lactate in the intensive care patient. Accuracy, relability, and coasts of different measurement systems. Acta Anaesth Scand 45:194–199

    Article  CAS  PubMed  Google Scholar 

  17. Kruse O, Grunnet N, Barfod C (2011) Blood lactate as a predictor for in-hospital mortality in patients admitted acutely in hospital: a systematic review. Scand J Trauma Resuscitation Emerg Med 19:74

    Article  Google Scholar 

  18. Andersen LW, Mackenhauer J, Roberts JC, Berg KM, Cocchi MN, Donnino MW (2013) Etiology and therapeutic approach to elevated lactate. Mayo Clin Proc 88:1127–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Theerawit P, Na Petvicharn C, Tangsujaritvijit V, Sutherasan Y (2016) The correlation between arterial and venous lactate in patients with sepsis and septic shock. J Intensive Care Med 18(Suppl 1):P177

    Google Scholar 

  20. Paquet AL, Valli V, Philippon AL, et al (2016) Agreement between arterial and venous lactate in emergency department patients: a prospective study of 157 consecutive patients. Eur J Emerg Med

    Google Scholar 

  21. Sabat J, Gould S, Gillego E et al (2016) The use of finger-stick blood to assess lactate in critically ill surgical patients. Ann Med Surg 10:41–48

    Article  Google Scholar 

  22. Nichol AD, Egi M, Pettila V et al (2010) Relative hyperlactatemia and hospital mortality in critically ill patients: a retrospective multi-centre study. Crit Care 14:R25

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jansen TC, Van Bommel J, Woodward R, Mulder PG, Bakker J (2009) Association between blood lactate levels, sequential organ failure assessment subscores, and 28-day mortality during early and late intensive care unit stay: a retrospective observational study. Crit Care Med 37:2369–2374

    Article  CAS  PubMed  Google Scholar 

  24. Khosravani H, Shahpori R, Stelfox T, Kirkpatrick AW, Laupland KB (2009) Occurrence and adverse effect on outcome of hyperlactatemia in the critically ill. Crit Care 13:R90

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nguyen HB, Rivers EP, Knoblich BP et al (2004) Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med 31:1637–1642

    Article  Google Scholar 

  26. Mikelsen ME, Miltiades AN, Gaieski DF et al (2009) Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Crit Care Med 37:1670–1677

    Article  Google Scholar 

  27. Donnino MW, Andersen LW, Giberson T et al (2014) Initial lactate and lactate change in post-cardiac arrest: a multicenter validation study. Crit Care Med 42:1804–1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Levraut J, Ichai C, Petit I, Ciebiera JP, Perus O, Grimaud D (2003) Low exogenous lactate clearance as an early predictor of mortality in normolactatemic critically ill patients. Crit Care Med 31:705–710

    Article  CAS  PubMed  Google Scholar 

  29. Arnold RC, Shapiro NI, Jones AE et al (2009) Multicenter study of early lactate clearance as a determinant of survival in patients with presumed sepsis. Shock 32:35–39

    Article  CAS  PubMed  Google Scholar 

  30. Haas SA, Lange T, Saugel B et al (2016) Severe hyperlactatemia, lactate clearance and mortality in unselected critically ill patients. Intensive Care Med 42:202–210

    Article  CAS  PubMed  Google Scholar 

  31. Vincent JL, Quintairos e Silva A, Couto L, Taccone FS (2016) The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care 20:257

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jansen TC, van Bommel SFJ et al (2010) Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled study. Am J Resp Crit Care Med 182:752–761

    Article  PubMed  Google Scholar 

  33. Jones AE, Shapiro NJ, Trzeciak S et al (2010) Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA 303:739–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Investigators PCESS, Yealy DM, Kellum JA, Huang DT et al (2014) A randomized trial of protocol-based care for early septic shock. N Engl J Med 370:1683–1693

    Article  Google Scholar 

  35. Hernandez G, Bruhn A, Castro R et al (2012) Persistent sepsis-induced hypotension without hyperlactatemia: a distinct clinical and physiological profile within the spectrum of septic shock. Crit Care Res Pract 2012:536852

    PubMed  PubMed Central  Google Scholar 

  36. Rhodes A, Evans LE, Alhazzani W et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43(3):304–377

    Article  PubMed  Google Scholar 

  37. Wutrich Y, Barraud D, Conrad M et al (2009) Early increase in arterial lactate concentration under epinephrine infusion is associated with a better prognosis during shock. Shock 34:4–9

    Article  Google Scholar 

  38. Brooks GA (2002) Lactate shuttles in nature. Biochem Soc Trans 30:258–264

    Article  CAS  PubMed  Google Scholar 

  39. Levraut J, Ciebiera JP, Chave S et al (1998) Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Resp Crit Care Med 157:1021–1026

    Article  CAS  PubMed  Google Scholar 

  40. Fuller BM, Dellonger RP (2012) Lactate as hemodynamic marker in critically ill. Curr Opin Crit Care 18:267–272

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cohen RD, Woods HF (1976) Clinical and biochemical aspects of lactic acidosis. Blackwell, London

    Google Scholar 

  42. De Backer D, Creteur J, Dubois MJ et al (2006) The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 34:403–408

    Article  PubMed  Google Scholar 

  43. Levy B, Sadoune LO, Gelot AM, Bollaert PE, Nabet P, Larcan A (2000) Evolution of lactate/pyruvate and arterial ketone body ratios in the early course of catecholamine-treated septic shock. Crit Care Med 28:114–119

    Article  CAS  PubMed  Google Scholar 

  44. Leverve XM (1999) Energy metabolism in critically ill patients: lactate is a major oxidizable substrate. Curr Opin Clin Nutr Metab Care 2:165–169

    Article  CAS  PubMed  Google Scholar 

  45. James JH, Luchette FA, Mc Carter FD, Fischer JE (1999) Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354:505–508

    Article  CAS  PubMed  Google Scholar 

  46. Boekstegers P, Weidenhöfer S, Kaspner D, Werdan K (1994) Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med 22:640–650

    Article  CAS  PubMed  Google Scholar 

  47. Stacpoole PW, Lorenz AC, Thomas RG, Harman EM (1998) Dichloroacetate in the treatment of lactic acidosis. Ann Intern Med 108:58–63

    Article  Google Scholar 

  48. Vary TC (1996) Sepsis-induced alterations in pyruvate dehydrogenase complex activity in rat skeletal muscle: effects on plasma lactate. Shock 6:89–94

    Article  CAS  PubMed  Google Scholar 

  49. Routsi C, Bardouniotou H, Delivoria-Ioannidou V, Kazi D, Roussos C, Zakynthinos S (1999) Pulmonary lactate release in patients with acute lung injury is not attributable to lung tissue hypoxia. Crit Care Med 27:2469–2467

    Article  CAS  PubMed  Google Scholar 

  50. Saks V, Dos Santos P, Gellerich FN, Diolez P (1998) Quantitative studies of enzyme-substrate compartmentation, functional coupling and metabolic channeling in muscle cells. Mol Cell Biochem 184:291–307

    Article  CAS  PubMed  Google Scholar 

  51. Luchette FA, Friend LA, Brown CC, Upputori RK, James JH (1998) Increased skeletal muscle Na+, K+-ATPase activity as a cause of increased lactate production after hemorrhagic shock. J Trauma 44:796–803

    Article  CAS  PubMed  Google Scholar 

  52. James JH, Fang CH, Schranz SJ, Hausselgren PO, Paul RJ, Fischer JE (1996) Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis. J Clin Invest 98:2288–2297

    Article  Google Scholar 

  53. Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE (2005) Relation between muscle Na+-K+-ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 365:871–875

    Article  CAS  PubMed  Google Scholar 

  54. Oudard S, Boitier E, Miccoli M, Rousset S, Dutrillaux B, Poupon MF (1997) Gliomas are driven by glycolysis putative roles of hexokinase, oxidative phosphorylation and mitochondrial ultrastructure. Anticancer Res 17:1903–1911

    CAS  PubMed  Google Scholar 

  55. Mathupala SP, Ko YH, Pedersen PL (2009) Hexokinase-2 bound mitochondria: cancer's stygian link to the "Warburg effect" and a pivotal target foe effective therapy. Semin Cancer Biol 19:17–24

    Article  CAS  PubMed  Google Scholar 

  56. Michaeli B, Martinez A, Revelly JP et al (2012) Effects of endotoxin on lactate metabolism in humans. Crit Care R16:139

    Article  Google Scholar 

  57. Stewart PA (1978) Independent and dependent variables of acid-base control. Resp Physiol 33:9–26

    Article  CAS  Google Scholar 

  58. Quintard H, Hubert S, Ichai C (2007) Qu'apporte le modèle de Stewart à l'interprétation des troubles acidobasiques? Ann Fr Anesth Réanim 26:423–433

    Article  CAS  PubMed  Google Scholar 

  59. Ichai C, Massa H, Hubert S (2006) Troubles de l'équilibre acidobasique chez l'adulte. Encycl Med Chir (Paris-France) 36-860-A-50:17

    Google Scholar 

  60. Mustafa I, Leverve XM (2002) Metabolic and hemodynamic effects of hypertonic solutions: sodium-lactate versus sodium chloride infusion in postoperative patients. Shock 18:306–310

    Article  PubMed  Google Scholar 

  61. Ichai C, Armando G, Orban JC et al (2009) Sodium-lactate vs mannitol in the treatment of intracranial hypertensive episodes in severe traumatic brain-injured patients. Intensive Care Med 35:471–479

    Article  CAS  PubMed  Google Scholar 

  62. Beadle RM, Frenneaux M (2010) Modification of myocardial substrate utilisation: a new therapeutic paradigm in cardiovascular disease. Heart 96:824–830

    Article  CAS  PubMed  Google Scholar 

  63. Ichai C, Leverve X, Orban JC (2008) Lactate and acute heart failure syndrome. In: Mebazaa A, Gheorghiade M, Zannad FM, Parrillo JE (eds) Acute heart failure. Spinger, London, pp 768–780

    Chapter  Google Scholar 

  64. Levy B, Mansart A, Montenmont C, Gibot S, Mallie JP, Lacolley P (2007) Myocardial lactate deprivation is associated with decreased cardiovascular performance, decreased myocardial energetics and early death in endotoxin shock. Intensive Care Med 33:495–505

    Article  CAS  PubMed  Google Scholar 

  65. Revelly JP, Tappy L, Martinez A et al (2005) Lactate and glucose metabolism in severe sepsis and cardiogenic shock. Crit Care Med 33:2235–2240

    Article  CAS  PubMed  Google Scholar 

  66. Leverve XM, Boon C, Hakim T, Anwar M, Siregar E, Mustafa I (2008) Half-molar sodium-lactate solution has a beneficial effect in patients after coronary artery bypass grafting. Intensive Care Med 34:1796–1803

    Article  CAS  PubMed  Google Scholar 

  67. Nalos M, Leverve XM, Huang SJ et al (2014) Half-molar sodium lactate infusion improves cardiac performance in acute heart failure: a pilot randomised controlled clinical trial. Crit Care 18:R48

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dienel GA (2012) Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab 32:1107–1138

    Article  CAS  PubMed  Google Scholar 

  69. van Hall G, Stromstad M, Rasmussen P et al (2009) Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab 29:1121–1129

    Article  PubMed  Google Scholar 

  70. Boumezbeur F, Petersen KF, Cline GW et al (2010) The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci 30:13983–13990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B (2011) In vivo evidence for lactate as a neuronal energy source. J Neurosci 31:7477–7484

    Article  CAS  PubMed  Google Scholar 

  72. Schurr A, Payne RS, Miller JJ, Rigor BM (1999) An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J Neurosci 19:34–39

    CAS  PubMed  Google Scholar 

  73. Schurr A, Rigor BM (1998) Brain anaerobic lactate production: a suicide note or a survival kit? Dev Neurosci 20:348–357

    Article  CAS  PubMed  Google Scholar 

  74. Schurr A, Payne RS, Miller JJ, Tseng MT, Rigor BM (2001) Blockade of lactate transport exacerbates delated neuronal damage in a rat model of cerebral ischemia. Brain Res 895:268–272

    Article  CAS  PubMed  Google Scholar 

  75. Schurr A (2014) Cerebral glycolysis: a century of persistent misunderstanding and misconception. Front Neurosci 8:1–18

    Article  Google Scholar 

  76. Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32:1152–1166

    Article  CAS  PubMed  Google Scholar 

  77. Pellerin L, Pellegri G, Bittar PG et al (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 120:291–299

    Article  Google Scholar 

  78. Pellerin L, Pellegri G, Martin JL, Magistretti PJ (1998) Expression of monocarboxylate transporter mRNA in mouse brain: support for a distinct role of lactate as an energy substrate for the neonatal vs adult brain. Proc Natl Acad Sci U S A 95:3990–3995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Amaral AI, Meisingset TW, Kotter MR, Sonnewald U (2013) Metabolic aspects of neuron-oligodendrocyte- astrocyte interactions. Front Endocrinol 4:1–5

    Article  CAS  Google Scholar 

  80. Figley CR (2011) Lactate transport and metabolism in the human brain: implications for the astrocyte-neuron shuttle hypothesis. J Neurosci 31:4768–4770

    Article  CAS  PubMed  Google Scholar 

  81. Bouzat P, Sala N, Suys T et al (2014) Cerebral metabolic effects of exogenous lactate supplementation in the injured human brain. Intensive Care Med 40:412–421

    Article  CAS  PubMed  Google Scholar 

  82. Oddo M, Levine JM, Frangos S et al (2012) Brain lactate metabolism in humans with subarachnoid hemorrhage. Stroke 43:1418–1421

    Article  CAS  PubMed  Google Scholar 

  83. Quintard H, Patet C, Zerlauth JB et al (2016) Improvement of Neuroenergetics by hypertonic lactate therapy in patients with traumatic brain injury is dependent on baseline cerebral lactate/pyruvate ratio. J Neurotrauma 33:681–687

    Article  PubMed  PubMed Central  Google Scholar 

  84. Patet C, Quintard H, Suys T et al (2015) Neuroenergetic response to prolonged cerebral glucose depletion after severe brain injury and the role of lactate. J Neurotrauma 32:1560–1566

    Article  PubMed  Google Scholar 

  85. Sala N, Suys T, Zerlauth JB et al (2013) Cerebral extracellular lactate increase is predominantly non ischemic in patients with severe traumatic brain injury. J Cereb Blood Flow Metab 33:1815–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rice AC, Zsoldos R, Chen T et al (2002) Lactate administration attenuates cognitive deficits following traumatic brain injury. Brain Res 928:156–159

    Article  CAS  PubMed  Google Scholar 

  87. Holloway R, Zhou Z, Harvey HB et al (2007) Effect of lactate therapy upon cognitive deficits after traumatic brain injury in the rat. Acta Neurochir 149:919–927

    Article  CAS  PubMed  Google Scholar 

  88. Ichai C, Payen JF, Orban JC et al (2013) Half-molar sodium lactate infusion to prevent intracranial hypertensive episodes in severe traumatic brain injured patients: a randomized controlled trial. Intensive Care Med 39:1413–1422

    Article  CAS  PubMed  Google Scholar 

  89. Maran A, Cranston I, Lomas J, Macdonald I, Amiel SA (1994) Protection by lactate of cerebral function during hypoglycaemia. Lancet 343:16–20

    Article  CAS  PubMed  Google Scholar 

  90. King P, Kong MF, Parkin H, MacDonald IA, Barber C, Tattersall RB (1998) Intravenous lactate prevents cerebral dysfunction during hypoglycaemia in insulin-dependent diabetes mellitus. Clin Sci (Lond) 94:157–163

    Article  CAS  Google Scholar 

  91. Ichai C, Orban JC, Fontaine E (2014) Sodium lactate for fluid resuscitation: the preferred solution for the coming decades? Crit Care 18:163

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fontaine E, Orban JC, Ichai C (2014) Hyperosmolar sodium-lactate in the ICU: vascular filling and cellular feeding. Crit Care 18:599

    Article  PubMed  PubMed Central  Google Scholar 

  93. Duburcq T, Favory R, Mathieu D et al (2014) Hypertonic sodium lactate improves fluid balance and hemodynamics in porcine endotoxin shock. Crit Care 18:467

    Article  PubMed  PubMed Central  Google Scholar 

  94. Su F, Xie K, He X et al (2016) The harmful effects of hypertonic sodium lactate administration in hyperdynamic septic shock. Shock 46:663–671

    Article  CAS  PubMed  Google Scholar 

  95. Somasetia DH, Setiati TE, Sjahrodji AM et al (2014) Early resuscitation of dengue shock syndrome in children with hyperosmolar sodium-lactate: a randomized single blind clinical trial of efficacy and safety. Crit Care 18:466

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

No conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole Ichai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Ichai, C., Orban, JC. (2018). Lactate: Metabolism, Pathophysiology. In: Ichai, C., Quintard, H., Orban, JC. (eds) Metabolic Disorders and Critically Ill Patients. Springer, Cham. https://doi.org/10.1007/978-3-319-64010-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64010-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64008-2

  • Online ISBN: 978-3-319-64010-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics