Skip to main content

Evaluation of Cerebral Blood Flow and Brain Metabolism in the Intensive Care Unit

  • Chapter
  • First Online:
Metabolic Disorders and Critically Ill Patients

Abstract

The imbalance between oxygen supply to the brain tissue and its utilization, that is, brain tissue hypoxia, is considered the major cause for the development of secondary brain damage and hence poor neurological outcome [1, 2]. This phenomenon develops hours after the initial insult, e.g., trauma, stroke, intracerebral hematoma, and subarachnoid hemorrhage (SAH). Therefore, improving brain oxygenation after severe brain injury is the focus of modern management in the intensive care unit (ICU). It relies upon a multimodal approach of monitoring that includes assessments of brain perfusion and metabolism at the bedside and during imaging modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bramlett HM, Dietrich WD (2007) Progressive damage after brain and spinal cord injury: pathomechanisms and treatment strategies. Prog Brain Res 161:125–141

    Article  PubMed  Google Scholar 

  2. Graham DI, Adams JH (1971) Ischaemic brain damage in fatal head injuries. Lancet 1:265–266

    Article  CAS  PubMed  Google Scholar 

  3. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW (2007) Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J Neurotrauma 24(Suppl 1):S59–S64

    PubMed  Google Scholar 

  4. Eriksson EA, Barletta JF, Figueroa BE, Bonnell BW, Vanderkolk WE, McAllen KJ, Ott MM (2012) Cerebral perfusion pressure and intracranial pressure are not surrogates for brain tissue oxygenation in traumatic brain injury. Clin Neurophysiol 123:1255–1260

    Article  PubMed  Google Scholar 

  5. Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, Machamer J, Chaddock K, Celix JM, Cherner M, Hendrix T (2012) A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med 367:2471–2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Coles JP, Minhas PS, Fryer TD, Smielewski P, Aigbirihio F, Donovan T, Downey SP, Williams G, Chatfield D, Matthews JC, Gupta AK, Carpenter TA, Clark JC, Pickard JD, Menon DK (2002) Effect of hyperventilation on cerebral blood flow in traumatic head injury: clinical relevance and monitoring correlates. Crit Care Med 30:1950–1959

    Article  CAS  PubMed  Google Scholar 

  7. Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57:769–774

    Article  CAS  PubMed  Google Scholar 

  8. Czosnyka M, Kirkpatrick PJ, Pickard JD (1996) Multimodal monitoring and assessment of cerebral haemodynamic reserve after severe head injury. Cerebrovasc Brain Metab Rev 8:273–295

    CAS  PubMed  Google Scholar 

  9. Saqqur M, Zygun D, Demchuk A (2007) Role of transcranial Doppler in neurocritical care. Crit Care Med 35:S216–S223

    Article  PubMed  Google Scholar 

  10. Bouzat P, Francony G, Declety P, Genty C, Kaddour A, Bessou P, Brun J, Jacquot C, Chabardes S, Bosson JL, Payen JF (2011) Transcranial Doppler to screen on admission patients with mild to moderate traumatic brain injury. Neurosurgery 68:1603–1609

    Article  PubMed  Google Scholar 

  11. Gopinath SP, Robertson CS, Contant CF, Hayes C, Feldman Z, Narayan RK, Grossman RG (1994) Jugular venous desaturation and outcome after head injury. J Neurol Neurosurg Psychiatry 57:717–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beynon C, Kiening KL, Orakcioglu B, Unterberg AW, Sakowitz OW (2012) Brain tissue oxygen monitoring and hyperoxic treatment in patients with traumatic brain injury. J Neurotrauma 29:2109–2123

    Article  PubMed  Google Scholar 

  13. Oddo M, Villa F, Citerio G (2012) Brain multimodality monitoring: an update. Curr Opin Crit Care 18:111–118

    Article  PubMed  Google Scholar 

  14. Chang JJ, Youn TS, Benson D, Mattick H, Andrade N, Harper CR, Moore CB, Madden CJ, Diaz-Arrastia RR (2009) Physiologic and functional outcome correlates of brain tissue hypoxia in traumatic brain injury. Crit Care Med 37:283–290

    Article  CAS  PubMed  Google Scholar 

  15. Narotam PK, Morrison JF, Nathoo N (2009) Brain tissue oxygen monitoring in traumatic brain injury and major trauma: outcome analysis of a brain tissue oxygen-directed therapy. J Neurosurg 111:672–682

    Article  PubMed  Google Scholar 

  16. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW (2007) Guidelines for the management of severe traumatic brain injury. X. Brain oxygen monitoring and thresholds. J Neurotrauma 24(Suppl 1):S65–S70

    PubMed  Google Scholar 

  17. Nortje J, Coles JP, Timofeev I, Fryer TD, Aigbirhio FI, Smielewski P, Outtrim JG, Chatfield DA, Pickard JD, Hutchinson PJ, Gupta AK, Menon DK (2008) Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: preliminary findings. Crit Care Med 36:273–281

    Article  CAS  PubMed  Google Scholar 

  18. Menon DK, Coles JP, Gupta AK, Fryer TD, Smielewski P, Chatfield DA, Aigbirhio F, Skepper JN, Minhas PS, Hutchinson PJ, Carpenter TA, Clark JC, Pickard JD (2004) Diffusion limited oxygen delivery following head injury. Crit Care Med 32:1384–1390

    Article  PubMed  Google Scholar 

  19. Rosenthal G, Hemphill JC 3rd, Sorani M, Martin C, Morabito D, Obrist WD, Manley GT (2008) Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med 36:1917–1924

    Article  CAS  PubMed  Google Scholar 

  20. Ponce LL, Pillai S, Cruz J, Li X, Julia H, Gopinath S, Robertson CS (2012) Position of probe determines prognostic information of brain tissue PO2 in severe traumatic brain injury. Neurosurgery 70:1492–1502

    Article  PubMed  PubMed Central  Google Scholar 

  21. Maloney-Wilensky E, Gracias V, Itkin A, Hoffman K, Bloom S, Yang W, Christian S, LeRoux PD (2009) Brain tissue oxygen and outcome after severe traumatic brain injury: a systematic review. Crit Care Med 37:2057–2063

    Article  PubMed  Google Scholar 

  22. Murkin JM, Arango M (2009) Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth 103(Suppl 1):i3–13

    Article  PubMed  Google Scholar 

  23. Lewis SB, Myburgh JA, Thornton EL, Reilly PL (1996) Cerebral oxygenation monitoring by near-infrared spectroscopy is not clinically useful in patients with severe closed-head injury: a comparison with jugular venous bulb oximetry. Crit Care Med 24:1334–1338

    Article  CAS  PubMed  Google Scholar 

  24. Davie SN, Grocott HP (2012) Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies. Anesthesiology 116:834–840

    Article  CAS  PubMed  Google Scholar 

  25. Murphy GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Vender JS, Vaughn J, Nisman M (2010) Cerebral oxygen desaturation events assessed by near-infrared spectroscopy during shoulder arthroscopy in the beach chair and lateral decubitus positions. Anesth Analg 111:496–505

    Article  PubMed  Google Scholar 

  26. Hillered L, Vespa PM, Hovda DA (2005) Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 22:3–41

    Article  PubMed  Google Scholar 

  27. Timofeev I, Carpenter KL, Nortje J, Al-Rawi PG, O'Connell MT, Czosnyka M, Smielewski P, Pickard JD, Menon DK, Kirkpatrick PJ, Gupta AK, Hutchinson PJ (2011) Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain 134:484–494

    Article  PubMed  Google Scholar 

  28. Sarrafzadeh A, Haux D, Plotkin M, Ludemann L, Amthauer H, Unterberg A (2005) Bedside microdialysis reflects dysfunction of cerebral energy metabolism in patients with aneurysmal subarachnoid hemorrhage as confirmed by 15 O-H2 O-PET and 18 F-FDG-PET. J Neuroradiol 32:348–351

    Article  CAS  PubMed  Google Scholar 

  29. Oddo M, Schmidt JM, Carrera E, Badjatia N, Connolly ES, Presciutti M, Ostapkovich ND, Levine JM, Le Roux P, Mayer SA (2008) Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med 36:3233–3238

    Article  CAS  PubMed  Google Scholar 

  30. Wintermark M, Sesay M, Barbier E, Borbely K, Dillon WP, Eastwood JD, Glenn TC, Grandin CB, Pedraza S, Soustiel JF, Nariai T, Zaharchuk G, Caille JM, Dousset V, Yonas H (2005) Comparative overview of brain perfusion imaging techniques. Stroke 36:e83–e99

    Article  PubMed  Google Scholar 

  31. Payen JF, Lefournier V, Barbier E, Darderian F, Fauvage B, Le Bas JF (2006) Imagerie de la perfusion et du metabolisme cerebral. Ann Fr Anesth Reanim 25:722–728

    Article  PubMed  Google Scholar 

  32. Wintermark M, Sincic R, Sridhar D, Chien JD (2008) Cerebral perfusion CT: technique and clinical applications. J Neuroradiol 35:253–260

    Article  CAS  PubMed  Google Scholar 

  33. Metting Z, Cerliani L, Rodiger LA, van der Naalt J (2013) Pathophysiological concepts in mild traumatic brain injury: diffusion tensor imaging related to acute perfusion CT imaging. PLoS One 8:e64461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hom J, Dankbaar JW, Schneider T, Cheng SC, Bredno J, Wintermark M (2009) Optimal duration of acquisition for dynamic perfusion CT assessment of blood-brain barrier permeability using the Patlak model. AJNR Am J Neuroradiol 30:1366–1370

    Article  CAS  PubMed  Google Scholar 

  35. Pindzola RR, Yonas H (1998) The xenon-enhanced computed tomography cerebral blood flow method. Neurosurgery 43:1488–1492

    CAS  PubMed  Google Scholar 

  36. Carlson AP, Brown AM, Zager E, Uchino K, Marks MP, Robertson C, Sinson GP, Marmarou A, Yonas H (2011) Xenon-enhanced cerebral blood flow at 28% xenon provides uniquely safe access to quantitative, clinically useful cerebral blood flow information: a multicenter study. AJNR Am J Neuroradiol 32:1315–1320

    Article  CAS  PubMed  Google Scholar 

  37. Honda M, Sase S, Yokota K, Ichibayashi R, Yoshihara K, Masuda H, Uekusa H, Nomoto J, Sugo N, Kishi T, Seiki Y (2013) Early cerebral circulation disturbance in patients suffering from different types of severe traumatic brain injury: a xenon CT and perfusion CT study. Acta Neurochir Suppl 118:259–263

    PubMed  Google Scholar 

  38. Barbier EL, Lamalle L, Decorps M (2001) Methodology of brain perfusion imaging. J Magn Reson Imaging 13:496–520

    Article  CAS  PubMed  Google Scholar 

  39. Detre JA, Rao H, Wang DJ, Chen YF, Wang Z (2012) Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging 35:1026–1037

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dai W, Garcia D, de Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60:1488–1497

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu W, Wang B, Wolfowitz R, Yeh PH, Nathan DE, Graner J, Tang H, Pan H, Harper J, Pham D, Oakes TR, French LM, Riedy G (2013) Perfusion deficits in patients with mild traumatic brain injury characterized by dynamic susceptibility contrast MRI. NMR Biomed 26:651–663

    CAS  PubMed  Google Scholar 

  42. Beaumont M, Lemasson B, Farion R, Segebarth C, Remy C, Barbier EL (2009) Characterization of tumor angiogenesis in rat brain using iron-based vessel size index MRI in combination with gadolinium-based dynamic contrast-enhanced MRI. J Cereb Blood Flow Metab 29:1714–1726

    Article  PubMed  PubMed Central  Google Scholar 

  43. Emblem KE, Mouridsen K, Bjornerud A, Farrar CT, Jennings D, Borra RJ, Wen PY, Ivy P, Batchelor TT, Rosen BR, Jain RK, Sorensen AG (2013) Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy. Nat Med 19:1178–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J (1983) Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med 24:790–798

    CAS  PubMed  Google Scholar 

  45. Menon DK (2006) Brain ischaemia after traumatic brain injury: lessons from 15O2 positron emission tomography. Curr Opin Crit Care 12:85–89

    Article  PubMed  Google Scholar 

  46. Lassen NA, Henriksen L, Paulson O (1981) Regional cerebral blood flow in stroke by 133Xenon inhalation and emission tomography. Stroke 12:284–288

    Article  CAS  PubMed  Google Scholar 

  47. Lassen NA, Andersen AR, Friberg L, Paulson OB (1988) The retention of [99mTc]-d,l-HM-PAO in the human brain after intracarotid bolus injection: a kinetic analysis. J Cereb Blood Flow Metab 8:S13–S22

    Article  CAS  PubMed  Google Scholar 

  48. Cosgrove D, Lassau N (2010) Imaging of perfusion using ultrasound. Eur J Nucl Med Mol Imaging 37(Suppl 1):S65–S85

    Article  PubMed  Google Scholar 

  49. Padhani AR, Krohn KA, Lewis JS, Alber M (2007) Imaging oxygenation of human tumours. Eur Radiol 17:861–872

    Article  PubMed  Google Scholar 

  50. Payen JF, Francony G, Fauvage B, Le Bas JF (2005) Apport de la spectroscopie RMN à l’évaluation du traumatisme crânien. Ann Fr Anesth Reanim 24:522–527

    Article  PubMed  Google Scholar 

  51. Tollard E, Galanaud D, Perlbarg V, Sanchez-Pena P, Le Fur Y, Abdennour L, Cozzone P, Lehericy S, Chiras J, Puybasset L (2009) Experience of diffusion tensor imaging and 1H spectroscopy for outcome prediction in severe traumatic brain injury: preliminary results. Crit Care Med 37:1448–1455

    Article  PubMed  Google Scholar 

  52. He X, Yablonskiy DA (2007) Quantitative BOLD: mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: default state. Magn Reson Med 57:115–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bouzat P, Millet A, Boue Y, Pernet-Gallay K, Trouve-Buisson T, Gaide-Chevronnay L, Barbier EL, Payen JF (2013) Changes in brain tissue oxygenation after treatment of diffuse traumatic brain injury by erythropoietin. Crit Care Med 41:1316–1324

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Payen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bouzat, P., Barbier, E.L., Francony, G., Payen, JF. (2018). Evaluation of Cerebral Blood Flow and Brain Metabolism in the Intensive Care Unit. In: Ichai, C., Quintard, H., Orban, JC. (eds) Metabolic Disorders and Critically Ill Patients. Springer, Cham. https://doi.org/10.1007/978-3-319-64010-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64010-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64008-2

  • Online ISBN: 978-3-319-64010-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics