Skip to main content

Cerebral Metabolism and Function

  • Chapter
  • First Online:

Abstract

The brain has an extremely active metabolism. The weight of the adult brain is approximately 1400 g representing 2% of body weight and at the same time accounts for 20% of oxygen (3 to 5 ml ∙ 100 g−1 ∙ min−1) and 25% of glucose consumption in a subject at rest (31 μmol ∙ 100 g−1 ∙ min−1). This brain metabolism requires a high cerebral blood flow (CBF) of approximately 750 mL ∙ min−1 or 50 mL ∙ 100 g−1 ∙ min−1 equivalent to 15% of cardiac output at rest. The oxygen supply is in excess of oxygen consumption explaining a low cerebral extraction of oxygen (25–30%), but the brain has very little energy stores. This requires a very accurate and fast adaptation of CBF to cerebral metabolism. Another important anatomic characteristic of the brain is its containment in a rigid structure meaning that a change in volume gives rise to an exponential change in intracranial pressure (ICP) after volume compensation mechanisms are exceeded. Hence, the status of the cerebral circulation and its consequences on brain metabolism are very specific to this organ.

This is a preview of subscription content, log in via an institution.

References

  1. Magistretti PJ (2009) Neuroscience. Low-cost travel in neurons. Science 325:1349–1351

    Article  CAS  PubMed  Google Scholar 

  2. Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283:496–497

    Article  CAS  PubMed  Google Scholar 

  3. Kasischke KA, Vishwasrao HD, Fisher PJ et al (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103

    Article  CAS  PubMed  Google Scholar 

  4. van Hall G, Stromstad M, Rasmussen P et al (2009) Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab 29:1121–1129

    Article  PubMed  Google Scholar 

  5. Sala N, Suys T, Zerlauth JB et al (2013) Cerebral extracellular lactate increase is predominantly nonischemic in patients with severe traumatic brain injury. J Cereb Blood Flow Metab 33:1815–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738

    Article  CAS  PubMed  Google Scholar 

  7. Leenders KL, Perani D, Lammertsma AA et al (1990) Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113(Pt 1):27–47

    Article  PubMed  Google Scholar 

  8. Fazekas F, Niederkorn K, Schmidt R et al (1988) White matter signal abnormalities in normal individuals: correlation with carotid ultrasonography, cerebral blood flow measurements, and cerebrovascular risk factors. Stroke 19:1285–1288

    Article  CAS  PubMed  Google Scholar 

  9. Shen J, Petersen KF, Behar KL et al (1999) Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci U S A 96:8235–8240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zonta M, Angulo MC, Gobbo S et al (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50

    Article  CAS  PubMed  Google Scholar 

  11. Attwell D, Buchan AM, Charpak S et al (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kannurpatti SS (2017) Mitochondrial calcium homeostasis: implications for neurovascular and neurometabolic coupling. J Cereb Blood Flow Metab 37:381–395

    Article  CAS  PubMed  Google Scholar 

  13. Botteri M, Bandera E, Minelli C, Latronico N (2008) Cerebral blood flow thresholds for cerebral ischemia in traumatic brain injury. A systematic review. Crit Care Med 36:3089–3092

    Article  PubMed  Google Scholar 

  14. Bandera E, Botteri M, Minelli C et al (2006) Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke: a systematic review. Stroke 37:1334–1339

    Article  PubMed  Google Scholar 

  15. Coles JP, Cunningham AS, Salvador R et al (2009) Early metabolic characteristics of lesion and nonlesion tissue after head injury. J Cereb Blood Flow Metab 29:965–975

    Article  PubMed  Google Scholar 

  16. Cunningham AS, Salvador R, Coles JP et al (2005) Physiological thresholds for irreversible tissue damage in contusional regions following traumatic brain injury. Brain 128:1931–1942

    Article  CAS  PubMed  Google Scholar 

  17. Lassen NA (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39:183–238

    Article  CAS  PubMed  Google Scholar 

  18. Drummond JC (1997) The lower limit of autoregulation: time to revise our thinking? Anesthesiology 86:1431–1433

    Article  CAS  PubMed  Google Scholar 

  19. Lucas SJ, Tzeng YC, Galvin SD et al (2010) Influence of changes in blood pressure on cerebral perfusion and oxygenation. Hypertension 55:698–705

    Article  CAS  PubMed  Google Scholar 

  20. Meng L, Hou W, Chui J et al (2015) Cardiac output and cerebral blood flow: the integrated regulation of brain perfusion in adult humans. Anesthesiology 123:1198–1208

    Article  PubMed  Google Scholar 

  21. Gruhn N, Larsen FS, Boesgaard S et al (2001) Cerebral blood flow in patients with chronic heart failure before and after heart transplantation. Stroke 32:2530–2533

    Article  CAS  PubMed  Google Scholar 

  22. Grillo P, Bruder N, Auquier P et al (2003) Esmolol blunts the cerebral blood flow velocity increase during emergence from anesthesia in neurosurgical patients. Anesth Analg 96:1145–1149

    Article  CAS  PubMed  Google Scholar 

  23. Bouma G, Muizelaar J (1990) Relationship between cardiac output and cerebral blood flow in patients with intact and with impaired autoregulation. J Neurosurg 73:368–374

    Article  CAS  PubMed  Google Scholar 

  24. Bayliss W (1902) On the local reaction of the arterial wall to changes in intraluminal pressure. J Physiol 28:220–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wallis SJ, Firth J, Dunn WR (1996) Pressure-induced myogenic responses in human isolated cerebral resistance arteries. Stroke 27:2287–2290. discussion 2291

    Article  CAS  PubMed  Google Scholar 

  26. Spronck B, Martens EG, Gommer ED, van de Vosse FN (2012) A lumped parameter model of cerebral blood flow control combining cerebral autoregulation and neurovascular coupling. Am J Physiol Heart Circ Physiol 303:H1143–H1153

    Article  CAS  PubMed  Google Scholar 

  27. Joshi S, Young WL, Duong DH et al (2000) Intracarotid infusion of the nitric oxide synthase inhibitor, L-NMMA, modestly decreases cerebral blood flow in human subjects. Anesthesiology 93:699–707

    Article  CAS  PubMed  Google Scholar 

  28. Thompson BG, Pluta RM, Girton ME, Oldfield EH (1996) Nitric oxide mediation of chemoregulation but not autoregulation of cerebral blood flow in primates. J Neurosurg 84:71–78

    Article  CAS  PubMed  Google Scholar 

  29. Joshi S, Young WL, Duong H et al (2002) Intracarotid nitroprusside does not augment cerebral blood flow in human subjects. Anesthesiology 96:60–66

    Article  CAS  PubMed  Google Scholar 

  30. Willie CK, Tzeng YC, Fisher JA, Ainslie PN (2014) Integrative regulation of human brain blood flow. J Physiol 592:841–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Umeyama T, Kugimiya T, Ogawa T et al (1995) Changes in cerebral blood flow estimated after stellate ganglion block by single photon emission computed tomography. J Auton Nerv Syst 50:339–346

    Article  CAS  PubMed  Google Scholar 

  32. Pearce WJ, D'Alecy LG (1980) Hemorrhage-induced cerebral vasoconstriction in dogs. Stroke 11:190–197

    Article  CAS  PubMed  Google Scholar 

  33. Chen JJ, Pike GB (2010) Global cerebral oxidative metabolism during hypercapnia and hypocapnia in humans: implications for BOLD fMRI. J Cereb Blood Flow Metab 30:1094–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McCulloch TJ, Visco E, Lam AM (2000) Graded hypercapnia and cerebral autoregulation during sevoflurane or propofol anesthesia. Anesthesiology 93:1205–1209

    Article  CAS  PubMed  Google Scholar 

  35. Meng L, Gelb AW (2015) Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology 122:196–205

    Article  PubMed  Google Scholar 

  36. Menon DK, Coles JP, Gupta AK et al (2004) Diffusion limited oxygen delivery following head injury. Crit Care Med 32:1384–1390

    Article  PubMed  Google Scholar 

  37. Joyce RR, McGee WT (2011) Hypercapnic cerebral edema presenting in a woman with asthma: a case report. J Med Case Rep 5:192

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tao T, Liu Y, Zhang J et al (2013) Therapeutic hypercapnia improves functional recovery and attenuates injury via antiapoptotic mechanisms in a rat focal cerebral ischemia/reperfusion model. Brain Res 1533:52–62

    Article  CAS  PubMed  Google Scholar 

  39. Zhou Q, Cao B, Niu L et al (2010) Effects of permissive hypercapnia on transient global cerebral ischemia-reperfusion injury in rats. Anesthesiology 112:288–297

    Article  PubMed  Google Scholar 

  40. Sorensen H, Secher NH, Siebenmann C et al (2012) Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine. Anesthesiology 117:263–270

    Article  CAS  PubMed  Google Scholar 

  41. Strebel SP, Kindler C, Bissonnette B et al (1998) The impact of systemic vasoconstrictors on the cerebral circulation of anesthetized patients. Anesthesiology 89:67–72

    Article  CAS  PubMed  Google Scholar 

  42. Kimmerly DS, Tutungi E, Wilson TD et al (2003) Circulating norepinephrine and cerebrovascular control in conscious humans. Clin Physiol Funct Imaging 23:314–319

    Article  CAS  PubMed  Google Scholar 

  43. Moppett IK, Wild MJ, Sherman RW et al (2004) Effects of ephedrine, dobutamine and dopexamine on cerebral haemodynamics: transcranial Doppler studies in healthy volunteers. Br J Anaesth 92:39–44

    Article  CAS  PubMed  Google Scholar 

  44. Joshi S, Meyers PM, Pile-Spellman J et al (2004) Intracarotid verapamil decreases both proximal and distal human cerebrovascular resistance. Anesthesiology 100:774–781

    Article  CAS  PubMed  Google Scholar 

  45. Heinke W, Zysset S, Hund-Georgiadis M et al (2005) The effect of esmolol on cerebral blood flow, cerebral vasoreactivity, and cognitive performance: a functional magnetic resonance imaging study. Anesthesiology 102:41–50

    Article  CAS  PubMed  Google Scholar 

  46. Bruder N, Pellissier D, Grillot P, Gouin F (2002) Cerebral hyperemia during recovery from general anesthesia in neurosurgical patients. Anesth Analg 94:650–654

    Article  PubMed  Google Scholar 

  47. Bryan RMJ (1990) Cerebral blood flow and energy metabolism during stress. Am J Phys 259:H269–H280

    CAS  Google Scholar 

  48. Buijs PC, Krabbe-Hartkamp MJ, Bakker CJ et al (1998) Effect of age on cerebral blood flow: measurement with ungated two-dimensional phase-contrast MR angiography in 250 adults. Radiology 209:667–674

    Article  CAS  PubMed  Google Scholar 

  49. Aanerud J, Borghammer P, Chakravarty MM et al (2012) Brain energy metabolism and blood flow differences in healthy aging. J Cereb Blood Flow Metab 32:1177–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kennedy C, Sokoloff L (1957) An adaptation of the nitrous oxide method to the study of the cerebral circulation in children; normal values for cerebral blood flow and cerebral metabolic rate in childhood. J Clin Invest 36:1130–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fischer A, Truemper E (1993) Transcranial Doppler applications in the neonate and child. In: Babikian V, Wechsler L (eds) Transcranial Doppler ultrasonography. Mosby, St-Louis, pp 282–302

    Google Scholar 

  52. Brown MM, Wade JP, Marshall J (1985) Fundamental importance of arterial oxygen content in the regulation of cerebral blood flow in man. Brain 108(Pt 1):81–93

    Article  PubMed  Google Scholar 

  53. Shapiro W, Wasserman AJ, Baker JP, Patterson JL Jr (1970) Cerebrovascular response to acute hypocapnic and eucapnic hypoxia in normal man. J Clin Invest 49:2362–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bruder N, Cohen B, Pellissier D, Francois G (1998) The effect of hemodilution on cerebral blood flow velocity in anesthetized patients. Anesth Analg 86:320–324

    CAS  PubMed  Google Scholar 

  55. Tomiyama Y, Jansen K, Brian JE Jr, Todd MM (1999) Hemodilution, cerebral O2 delivery, and cerebral blood flow: a study using hyperbaric oxygenation. Am J Phys 276:H1190–H1196

    CAS  Google Scholar 

  56. Hoiland RL, Bain AR, Rieger MG et al (2016) Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am J Physiol Regul Integr Comp Physiol 310:R398–R413

    Article  PubMed  Google Scholar 

  57. Rebel A, Lenz C, Krieter H et al (2001) Oxygen delivery at high blood viscosity and decreased arterial oxygen content to brains of conscious rats. Am J Physiol Heart Circ Physiol 280:H2591–H2597

    Article  CAS  PubMed  Google Scholar 

  58. Rebel A, Ulatowski JA, Kwansa H et al (2003) Cerebrovascular response to decreased hematocrit: effect of cell-free hemoglobin, plasma viscosity, and CO2. Am J Physiol Heart Circ Physiol 285:H1600–H1608

    Article  CAS  PubMed  Google Scholar 

  59. Erecinska M, Thoresen M, Silver IA (2003) Effects of hypothermia on energy metabolism in mammalian central nervous system. J Cereb Blood Flow Metab 23:513–530

    Article  CAS  PubMed  Google Scholar 

  60. Michenfelder JD, Milde JH (1991) The relationship among canine brain temperature, metabolism, and function during hypothermia. Anesthesiology 75:130–136

    Article  CAS  PubMed  Google Scholar 

  61. Vigue B, Ract C, Zlotine N et al (2000) Relationship between intracranial pressure, mild hypothermia and temperature-corrected PaCO2 in patients with traumatic brain injury. Intensive Care Med 26:722–728

    Article  CAS  PubMed  Google Scholar 

  62. Strandgaard S (1993) The cerebral circulation in the elderly: the influence of age, vascular disease, and antihypertensive treatment. Am J Geriatr Cardiol 2:32–36

    PubMed  Google Scholar 

  63. Paulson OB, Waldemar G, Schmidt JF, Strandgaard S (1989) Cerebral circulation under normal and pathologic conditions. Am J Cardiol 63:2C–5C

    Article  CAS  PubMed  Google Scholar 

  64. Strebel S, Lam AM, Matta BF, Newell DW (1997) Impaired cerebral autoregulation after mild brain injury. Surg Neurol 47:128–131

    Article  CAS  PubMed  Google Scholar 

  65. Budohoski KP, Czosnyka M, Kirkpatrick PJ et al (2013) Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage. Nat Rev Neurol 9:152–163

    Article  CAS  PubMed  Google Scholar 

  66. Kety SS, Schmidt CF (1945) The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am J Phys 14:353

    Google Scholar 

  67. Young WL, Prohovnik I, Schroeder T et al (1990) Intraoperative 133Xe cerebral blood flow measurements by intravenous versus intracarotid methods. Anesthesiology 73:637–643

    Article  CAS  PubMed  Google Scholar 

  68. Melot C, Berre J, Moraine JJ, Kahn RJ (1996) Estimation of cerebral blood flow at bedside by continuous jugular thermodilution. J Cereb Blood Flow Metab 16:1263–1270

    Article  CAS  PubMed  Google Scholar 

  69. Wietasch GJ, Mielck F, Scholz M et al (2000) Bedside assessment of cerebral blood flow by double-indicator dilution technique. Anesthesiology 92:367–375

    Article  CAS  PubMed  Google Scholar 

  70. Gopinath S, Robertson C, Contant C et al (1994) Jugular venous desaturation and outcome after head injury. J Neurol Neurosurg Psychiatry 57:717–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cormio M, Valadka A, Robertson C (1999) Elevated jugular venous oxygen saturation after severe head injury. J Neurosurg 90:9–15

    Article  CAS  PubMed  Google Scholar 

  72. Metz C, Holzschuh M, Bein T et al (1998) Monitoring of cerebral oxygen metabolism in the jugular bulb: reliability of unilateral measurements in severe head injury. J Cereb Blood Flow Metab 18:332–343

    Article  CAS  PubMed  Google Scholar 

  73. Huang SC, Carson RE, Hoffman EJ et al (1983) Quantitative measurement of local cerebral blood flow in humans by positron computed tomography and 15O-water. J Cereb Blood Flow Metab 3:141–153

    Article  CAS  PubMed  Google Scholar 

  74. Kaisti KK, Langsjo JW, Aalto S et al (2003) Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology 99:603–613

    Article  CAS  PubMed  Google Scholar 

  75. Stender J, Gosseries O, Bruno MA et al (2014) Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study. Lancet 384:514–522

    Article  PubMed  Google Scholar 

  76. Fan AP, Jahanian H, Holdsworth SJ, Zaharchuk G (2016) Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: a systematic review. J Cereb Blood Flow Metab 36:842–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Czosnyka M, Balestreri M, Steiner L et al (2005) Age, intracranial pressure, autoregulation, and outcome after brain trauma. J Neurosurg 102:450–454

    Article  PubMed  Google Scholar 

  78. Donnelly J, Budohoski KP, Smielewski P, Czosnyka M (2016) Regulation of the cerebral circulation: bedside assessment and clinical implications. Crit Care 20:129

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bouzat P, Almeras L, Manhes P et al (2016) Transcranial Doppler to predict neurologic outcome after mild to moderate traumatic brain injury. Anesthesiology 125:346–354

    Article  PubMed  Google Scholar 

  80. Varsos GV, Budohoski KP, Kolias AG et al (2014) Relationship of vascular wall tension and autoregulation following traumatic brain injury. Neurocrit Care 21:266–274

    Article  PubMed  Google Scholar 

  81. Aaslid R (2002) Transcranial Doppler assessment of cerebral vasospasm. Eur J Ultrasound 16:3–10

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Bruder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Velly, L., Bruder, N. (2018). Cerebral Metabolism and Function. In: Ichai, C., Quintard, H., Orban, JC. (eds) Metabolic Disorders and Critically Ill Patients. Springer, Cham. https://doi.org/10.1007/978-3-319-64010-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64010-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64008-2

  • Online ISBN: 978-3-319-64010-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics