Skip to main content

Extrarenal Removal Therapies in Acute Kidney Injury

  • Chapter
  • First Online:
Book cover Metabolic Disorders and Critically Ill Patients

Abstract

Renal replacement therapy (RRT) was the first technique that replaced an organ, more precisely the exocrine function of kidney. John Jacob Abel first demonstrated the feasibility of the concept of the “artificial kidney” in dogs in 1913 [1, 2]. During the World War 2, Kohler developed the human application of artificial kidney that was subsequently widely used in the USA in the early 1950s [1, 3]. In 1960, Scribner and Quinton invented and developed the arteriovenous shunt that allowed repeated connections of patients to machines, rapidly replaced by subcutaneous fistula [4, 5]. The combination of fistula and artificial kidney was the start signal for intermittent hemodialysis (IHD) as the first-line treatment of end-stage kidney disease (ESKD). From 1980 to the early 1990s, both continuous hemofiltration and continuous hemodialysis were advocated in intensive care units (ICUs), during acute kidney injury (AKI) because of a better hemodynamic stability and simplicity [6–8]. Renal replacement therapy is based on the concept that water and solute can cross a semipermeable membrane from blood to extracorporeal compartment, allowing elimination of undue fluid and electrolyte accumulation induced by AKI. It is usual to oppose conventional hemodialysis, mainly based on diffusion principle, and hemofiltration, mainly based on convection principle. In fact, numerous RRT techniques have been developed, using both diffusive and convective techniques at different degrees. This can be confusing for ICU physicians and nurses. In this chapter, we will summarize general principles and main RRT techniques that can be used in ICU to treat AKI, the timing to start RRT, the dose that should be used, and the short review on anticoagulation strategies. Before starting a RRT session, all reversible causes of AKI must have been eliminated. First, physical examination, focused ultrasound, and/or CT scan must systematically eliminate acute bladder retention and/or hydronephrosis. Second, hemodynamic analysis and monitoring must guarantee an adequate level of mean arterial pressure (ranging from 65 to 85 mmHg) and normalization of blood volume (“volume-unresponsive AKI”) [9, 10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Rettig RA (2011) Special treatment—the story of Medicare’s ESRD entitlement. N Engl J Med 364(7):596–598

    Article  CAS  PubMed  Google Scholar 

  2. Eknoyan G (2009) The wonderful apparatus of John Jacob Abel called the “artificial kidney”. Semin Dial juin 22(3):287–296

    Article  Google Scholar 

  3. Flexner J, Chassin MR (1941) Clinical studies on pyridoxine (vitamin B(6)). J Clin Invest mai 20(3):313–316

    Article  CAS  Google Scholar 

  4. Blagg CR, Hickman RO, Eschbach JW, Scribner BH (1970) Home hemodialysis: six years’ experience. N Engl J Med 283(21):1126–1131

    Article  CAS  PubMed  Google Scholar 

  5. Scribner BH, Cole JJ, Christopher TG, Vizzo JE, Atkins RC, Blagg CR (1970) Long-term total parenteral nutrition. The concept of an artificial gut. JAMA 212(3):457–463

    Article  CAS  PubMed  Google Scholar 

  6. Dodd NJ, O’Donovan RM, Bennett-Jones DN, Rylance PB, Bewick M, Parsons V et al (1983) Arteriovenous haemofiltration: a recent advance in the management of renal failure. Br Med J Clin Res Ed 287(6398):1008–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gibney RT, Stollery DE, Lefebvre RE, Sharun CJ, Chan P (1988) Continuous arteriovenous hemodialysis: an alternative therapy for acute renal failure associated with critical illness. Can Med Assoc J 139(9):861–866

    CAS  Google Scholar 

  8. Bellomo R, Mansfield D, Rumble S, Shapiro J, Parkin G, Boyce N (1992) Acute renal failure in critical illness. Conventional dialysis versus acute continuous hemodiafiltration. ASAIO J Am Soc Artif Intern Organs 38(3):M654–M657

    Article  CAS  Google Scholar 

  9. Khwaja A (2012) KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 120(4):c179–c184

    PubMed  Google Scholar 

  10. Ad-hoc working group of ERBP, Fliser D, Laville M, Covic A, Fouque D, Vanholder R et al (2012) A European renal best practice (ERBP) position statement on the kidney disease improving global outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant 27(12):4263–4272

    Article  Google Scholar 

  11. Neri M, Villa G, Garzotto F, Bagshaw S, Bellomo R, Cerda J et al (2016) Nomenclature for renal replacement therapy in acute kidney injury: basic principles. Crit Care Lond Engl 20(1):318

    Article  Google Scholar 

  12. Ronco C, Ricci Z, De Backer D, Kellum JA, Taccone FS, Joannidis M et al (2015) Renal replacement therapy in acute kidney injury: controversy and consensus. Crit Care Lond Engl 19:146

    Article  Google Scholar 

  13. Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP et al (2009) Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int 76(4):422–427

    Article  PubMed  Google Scholar 

  14. Grams ME, Estrella MM, Coresh J, Brower RG, Liu KD, National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network (2011) Fluid balance, diuretic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol CJASN 6(5):966–973

    Article  PubMed  Google Scholar 

  15. Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL et al (2008) A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care Lond Engl 12(3):R74

    Article  Google Scholar 

  16. Teixeira C, Garzotto F, Piccinni P, Brienza N, Iannuzzi M, Gramaticopolo S et al (2013) Fluid balance and urine volume are independent predictors of mortality in acute kidney injury. Crit Care Lond Engl 17(1):R14

    Article  Google Scholar 

  17. Bagshaw SM, Darmon M, Ostermann M, Finkelstein FO, Wald R, Tolwani AJ et al (2017) Current state of the art for renal replacement therapy in critically ill patients with acute kidney injury. Intensive Care Med 43(6):841–854

    Article  PubMed  Google Scholar 

  18. Schiffl H, Lang SM, Fischer R (2002) Daily hemodialysis and the outcome of acute renal failure. N Engl J Med 346(5):305–310

    Article  PubMed  Google Scholar 

  19. Sakai K, Matsuda M (2011) Solute removal efficiency and biocompatibility of the high-performance membrane - from engineering points of view. Contrib Nephrol 173:11–22

    Article  CAS  PubMed  Google Scholar 

  20. Bowry SK, Gatti E, Vienken J (2011) Contribution of polysulfone membranes to the success of convective dialysis therapies. Contrib Nephrol 173:110–118

    Article  CAS  PubMed  Google Scholar 

  21. Krummel T, Hannedouche T (2013) Clinical potentials of adsorptive dialysis membranes. Blood Purif 35(Suppl 2):1–4

    Article  PubMed  Google Scholar 

  22. Kokubo K, Kurihara Y, Kobayashi K, Tsukao H, Kobayashi H (2015) Evaluation of the biocompatibility of dialysis membranes. Blood Purif 40(4):293–297

    Article  CAS  PubMed  Google Scholar 

  23. Santoro A, Guadagni G (2010) Dialysis membrane: from convection to adsorption. NDT Plus mai 3(Suppl 1):i36–i39

    CAS  Google Scholar 

  24. Aucella F, Gesuete A, Vigilante M, Prencipe M (2013) Adsorption dialysis: from physical principles to clinical applications. Blood Purif 35(Suppl 2):42–47

    Article  CAS  PubMed  Google Scholar 

  25. Kerr PG, Toussaint ND, Kidney Health Australia, Caring for Australasians with Renal Impairment (2013) KHA-CARI guideline: dialysis adequacy (haemodialysis): dialysis membranes. Nephrol Carlton Vic 18(7):485–488

    Article  Google Scholar 

  26. Joannes-Boyau O, Honoré PM, Perez P, Bagshaw SM, Grand H, Canivet J-L et al (2013) High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial. Intensive Care Med 39(9):1535–1546

    Article  PubMed  Google Scholar 

  27. Quenot J-P, Binquet C, Vinsonneau C, Barbar S-D, Vinault S, Deckert V et al (2015) Very high volume hemofiltration with the Cascade system in septic shock patients. Intensive Care Med 41(12):2111–2120

    Article  PubMed  Google Scholar 

  28. Vinsonneau C, Allain-Launay E, Blayau C, Darmon M, Ducheyron D, Gaillot T et al (2015) Renal replacement therapy in adult and pediatric intensive care : recommendations by an expert panel from the French Intensive Care Society (SRLF) with the French Society of Anesthesia Intensive Care (SFAR) French Group for Pediatric Intensive Care Emergencies (GFRUP) the French dialysis society (SFD). Ann Intensive Care 5(1):58

    Article  PubMed  PubMed Central  Google Scholar 

  29. Verresen L, Fink E, Lemke HD, Vanrenterghem Y (1994) Bradykinin is a mediator of anaphylactoid reactions during hemodialysis with AN69 membranes. Kidney Int 45(5):1497–1503

    Article  CAS  PubMed  Google Scholar 

  30. Tielemans C, Madhoun P, Lenaers M, Schandene L, Goldman M, Vanherweghem JL (1990) Anaphylactoid reactions during hemodialysis on AN69 membranes in patients receiving ACE inhibitors. Kidney Int 38(5):982–984

    Article  CAS  PubMed  Google Scholar 

  31. Cruz DN, Antonelli M, Fumagalli R, Foltran F, Brienza N, Donati A et al (2009) Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA 301(23):2445–2452

    Article  CAS  PubMed  Google Scholar 

  32. Chang T, Tu Y-K, Lee C-T, Chao A, Huang C-H, Wang M-J et al (2017) Effects of Polymyxin B Hemoperfusion on mortality in patients with severe sepsis and septic shock: a systemic review, meta-analysis update, and disease severity subgroup meta-analysis. Crit Care Med 45(8):e858–e864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Payen DM, Guilhot J, Launey Y, Lukaszewicz AC, Kaaki M, Veber B et al (2015) Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial. Intensive Care Med 41(6):975–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S et al (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294(7):813–818

    Article  CAS  PubMed  Google Scholar 

  35. Friedrich JO, Wald R, Bagshaw SM, Burns KEA, Adhikari NKJ (2012) Hemofiltration compared to hemodialysis for acute kidney injury: systematic review and meta-analysis. Crit Care Lond Engl 16(4):R146

    Article  Google Scholar 

  36. RENAL, Replacement Therapy Study Investigators, Bellomo R, Cass A, Cole L, Finfer S, Gallagher M et al (2009) Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 361(17):1627–1638

    Article  Google Scholar 

  37. Vinsonneau C, Camus C, Combes A, Costa de Beauregard MA, Klouche K, Boulain T et al (2006) Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicentre randomised trial. Lancet Lond Engl 368(9533):379–385

    Article  Google Scholar 

  38. Schneider AG, Bellomo R, Bagshaw SM, Glassford NJ, Lo S, Jun M et al (2013) Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med 39(6):987–997

    Article  CAS  PubMed  Google Scholar 

  39. Schoenfelder T, Chen X, Bleß H-H (2017) Effects of continuous and intermittent renal replacement therapies among adult patients with acute kidney injury. GMS Health Technol Assess 13:Doc01

    PubMed  PubMed Central  Google Scholar 

  40. Zhang L, Yang J, Eastwood GM, Zhu G, Tanaka A, Bellomo R (2015) Extended daily dialysis versus continuous renal replacement therapy for acute kidney injury: a meta-analysis. Am J Kidney Dis 66(2):322–330

    Article  PubMed  Google Scholar 

  41. Kovacs B, Sullivan KJ, Hiremath S, Patel RV (2017) Effect of sustained low efficient dialysis versus continuous renal replacement therapy on renal recovery after acute kidney injury in the intensive care unit: a systematic review and meta-analysis. Nephrol Carlton Vic 22(5):343–353

    Article  Google Scholar 

  42. Schortgen F (2003) Hypotension during intermittent hemodialysis: new insights into an old problem. Intensive Care Med 29(10):1645–1649

    Article  PubMed  Google Scholar 

  43. Godaly G, Carlsson O, Broman M (2016) Phoxilium(®) reduces hypophosphataemia and magnesium supplementation during continuous renal replacement therapy. Clin Kidney J 9(2):205–210

    Article  PubMed  Google Scholar 

  44. Besnard N, Serveaux M, Machado S, Daubin D, Brunot V, Amigues L et al (2016) Electrolytes-enriched Hemodiafiltration solutions for continuous renal replacement therapy in acute kidney injury: a crossover study. Blood Purif 42(1):18–26

    Article  CAS  PubMed  Google Scholar 

  45. Chua H-R, Schneider AG, Baldwin I, Collins A, Ho L, Bellomo R (2013) Phoxilium vs Hemosol-B0 for continuous renal replacement therapy in acute kidney injury. J Crit Care 28(5):884.e7–884.14

    Article  CAS  Google Scholar 

  46. Broman M, Carlsson O, Friberg H, Wieslander A, Godaly G (2011) Phosphate-containing dialysis solution prevents hypophosphatemia during continuous renal replacement therapy. Acta Anaesthesiol Scand 55(1):39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ostermann M, Dickie H, Barrett NA (2012) Renal replacement therapy in critically ill patients with acute kidney injury—when to start. Nephrol Dial Transplant 27(6):2242–2248

    Article  PubMed  Google Scholar 

  48. Karvellas CJ, Farhat MR, Sajjad I, Mogensen SS, Leung AA, Wald R et al (2011) A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis. Crit Care Lond Engl 15(1):R72

    Article  Google Scholar 

  49. Wierstra BT, Kadri S, Alomar S, Burbano X, Barrisford GW, Kao RLC (2016) The impact of “early” versus “late” initiation of renal replacement therapy in critical care patients with acute kidney injury: a systematic review and evidence synthesis. Crit Care Lond Engl 20(1):122

    Article  Google Scholar 

  50. Shiao C-C, Ko W-J, Wu V-C, Huang T-M, Lai C-F, Lin Y-F et al (2012) U-curve association between timing of renal replacement therapy initiation and in-hospital mortality in postoperative acute kidney injury. PLoS One 7(8):e42952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Seabra VF, Balk EM, Liangos O, Sosa MA, Cendoroglo M, Jaber BL (2008) Timing of renal replacement therapy initiation in acute renal failure: a meta-analysis. Am J Kidney Dis 52(2):272–284

    Article  PubMed  Google Scholar 

  52. Bouman CSC, Oudemans-Van Straaten HM, Tijssen JGP, Zandstra DF, Kesecioglu J (2002) Effects of early high-volume continuous venovenous hemofiltration on survival and recovery of renal function in intensive care patients with acute renal failure: a prospective, randomized trial. Crit Care Med 30(10):2205–2211

    Article  PubMed  Google Scholar 

  53. Gaudry S, Hajage D, Schortgen F, Martin-Lefevre L, Pons B, Boulet E et al (2016) Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med 375(2):122–133

    Article  PubMed  Google Scholar 

  54. Zarbock A, Kellum JA, Schmidt C, Van Aken H, Wempe C, Pavenstädt H et al (2016) Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA 315(20):2190–2199

    Article  CAS  PubMed  Google Scholar 

  55. Bagshaw SM, Cruz DN, Gibney RN, Ronco C (2009) A proposed algorithm for initiation of renal replacement therapy in adult critically ill patients. Crit Care 13:317

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ronco C, Bellomo R, Homel P, Brendolan A, Dan M, Piccinni P et al (2000) Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet Lond Engl 356(9223):26–30

    Article  CAS  Google Scholar 

  57. Honore PM, Joannes-Boyau O (2004) High volume hemofiltration (HVHF) in sepsis: a comprehensive review of rationale, clinical applicability, potential indications and recommendations for future research. Int J Artif Organs 27(12):1077–1082

    CAS  PubMed  Google Scholar 

  58. Bellomo R, Honoré PM, Matson J, Ronco C, Winchester J (2005) Extracorporeal blood treatment (EBT) methods in SIRS/sepsis. Int J Artif Organs 28(5):450–458

    CAS  PubMed  Google Scholar 

  59. Tetta C, Bellomo R, Kellum J, Ricci Z, Pohlmeiere R, Passlick-Deetjen J et al (2004) High volume hemofiltration in critically ill patients: why, when and how? Contrib Nephrol 144:362–375

    Article  PubMed  Google Scholar 

  60. VA/NIH Acute Renal Failure Trial Network, Palevsky PM, Zhang JH, O’Connor TZ, Chertow GM, Crowley ST et al (2008) Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 359(1):7–20

    Article  Google Scholar 

  61. Cole L, Bellomo R, Hart G, Journois D, Davenport P, Tipping P et al (2002) A phase II randomized, controlled trial of continuous hemofiltration in sepsis. Crit Care Med 30(1):100–106

    Article  CAS  PubMed  Google Scholar 

  62. Cole L, Bellomo R, Journois D, Davenport P, Baldwin I, Tipping P (2001) High-volume haemofiltration in human septic shock. Intensive Care Med 27(6):978–986

    Article  CAS  PubMed  Google Scholar 

  63. Honore PM, Jamez J, Wauthier M, Lee PA, Dugernier T, Pirenne B et al (2000) Prospective evaluation of short-term, high-volume isovolemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock. Crit Care Med 28(11):3581–3587

    Article  CAS  PubMed  Google Scholar 

  64. Joannes-Boyau O, Rapaport S, Bazin R, Fleureau C, Janvier G (2004) Impact of high volume hemofiltration on hemodynamic disturbance and outcome during septic shock. ASAIO J 50(1):102–109

    Article  PubMed  Google Scholar 

  65. Cornejo R, Downey P, Castro R, Romero C, Regueira T, Vega J et al (2006) High-volume hemofiltration as salvage therapy in severe hyperdynamic septic shock. Intensive Care Med 32(5):713–722

    Article  CAS  PubMed  Google Scholar 

  66. Boussekey N, Chiche A, Faure K, Devos P, Guery B, d’Escrivan T et al (2008) A pilot randomized study comparing high and low volume hemofiltration on vasopressor use in septic shock. Intensive Care Med 34(9):1646–1653

    Article  CAS  PubMed  Google Scholar 

  67. Laurent I, Adrie C, Vinsonneau C, Cariou A, Chiche J-D, Ohanessian A et al (2005) High-volume hemofiltration after out-of-hospital cardiac arrest: a randomized study. J Am Coll Cardiol 46(3):432–437

    Article  PubMed  Google Scholar 

  68. Shinozaki K, Lampe JW, Kim J, Yin T, Da T, Oda S et al (2016) The effects of early high-volume hemofiltration on prolonged cardiac arrest in rats with reperfusion by cardiopulmonary bypass: a randomized controlled animal study. Intensive Care Med Exp 4(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhang P, Yang Y, Lv R, Zhang Y, Xie W, Chen J (2012) Effect of the intensity of continuous renal replacement therapy in patients with sepsis and acute kidney injury: a single-center randomized clinical trial. Nephrol Dial Transpl 27(3):967–973

    Article  CAS  Google Scholar 

  70. Combes A, Bréchot N, Amour J, Cozic N, Lebreton G, Guidon C et al (2015) Early high-volume hemofiltration versus standard Care for Post-Cardiac Surgery Shock. The HEROICS study. Am J Respir Crit Care Med 192(10):1179–1190

    Article  PubMed  Google Scholar 

  71. DiCarlo JV, Auerbach SR, Alexander SR (2006) Clinical review: alternative vascular access techniques for continuous hemofiltration. Crit Care Lond Engl. 10(5):230

    Article  Google Scholar 

  72. Naka T, Egi M, Bellomo R, Baldwin I, Fealy N, Wan L (2008) Resistance of vascular access catheters for continuous renal replacement therapy: an ex vivo evaluation. Int J Artif Organs 31(10):905–909

    CAS  PubMed  Google Scholar 

  73. Joannidis M, Oudemans-van Straaten HM (2007) Clinical review: patency of the circuit in continuous renal replacement therapy. Crit Care Lond Engl. 11(4):218

    Article  Google Scholar 

  74. Lafargue M, Joannes-Boyau O, Honoré PM, Gauche B, Grand H, Fleureau C et al (2008) Acquired deficit of antithrombin and role of supplementation in septic patients during continuous veno-venous hemofiltration. ASAIO J Am Soc Artif Intern Organs 1992 54(1):124–128

    CAS  Google Scholar 

  75. du Cheyron D, Bouchet B, Bruel C, Daubin C, Ramakers M, Charbonneau P (2006) Antithrombin supplementation for anticoagulation during continuous hemofiltration in critically ill patients with septic shock: a case-control study. Crit Care Lond Engl. 10(2):R45

    Article  Google Scholar 

  76. Schultheiß C, Saugel B, Phillip V, Thies P, Noe S, Mayr U et al (2012) Continuous venovenous hemodialysis with regional citrate anticoagulation in patients with liver failure: a prospective observational study. Crit Care Lond Engl 16(4):R162

    Article  Google Scholar 

  77. Tan JN, Haroon SWP, Mukhopadhyay A, Lau T, Murali TM, Phua J, et al. Hyperlactatemia predicts citrate intolerance with regional citrate anticoagulation during continuous renal replacement therapy. J Intensive Care Med. 2017; 885066617701068. 10.1177/0885066617701068

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Joannes-Boyau M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Joannes-Boyau, O., Muller, L. (2018). Extrarenal Removal Therapies in Acute Kidney Injury. In: Ichai, C., Quintard, H., Orban, JC. (eds) Metabolic Disorders and Critically Ill Patients. Springer, Cham. https://doi.org/10.1007/978-3-319-64010-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64010-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64008-2

  • Online ISBN: 978-3-319-64010-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics