Skip to main content

Assessing FBA Optimal States in the Feasible Flux Phenotypic Space

  • Chapter
  • First Online:
A Network-Based Approach to Cell Metabolism

Part of the book series: Springer Theses ((Springer Theses))

  • 393 Accesses

Abstract

Optimal growth solutions can be confronted with the whole set of feasible flux phenotypes (FFP), which provides a reference map that helps to assess the likelihood of optimal and high-growth states and their extent of conformity with experimental results. In addition, FFP maps are able to uncover metabolic behaviours that are unreachable using models based on optimality principles. The information content of the full FFP space of metabolic states provides with an entire map to explore and evaluate metabolic behaviour and capabilities, opening new avenues for biotechnological and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notice that none of these histograms can have more than one peak due to the convexity of the steady-state flux space.

  2. 2.

    In the mathematical/computational context, typical means statistically representative in relation to the whole set of flux states contained in the FFP space.

References

  1. Ibarra RU, Edwards JS, Palsson BØ (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420:186–189

    Article  CAS  Google Scholar 

  2. Blank LM, Kuepfer L, Sauer U (2005) Large-scale \(^{13}\)C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol 6(6):R49

    Article  Google Scholar 

  3. Frick O, Whittmann C (2005) Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. 4:30

    Google Scholar 

  4. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the warburg effect. Science 324:1029–1033

    Article  CAS  Google Scholar 

  5. Menendez J, Joven J, Cufí S, Corominas-Faja B, Oliveras-Ferraros C, Cuyàs E, Martin-Castillo B, Lopez-Bonet E, Alarcón T, Vazquez-Martin A (2013) The Warburg effect version 2.0. Cell Cycle 12(8):1166–1179

    Article  CAS  Google Scholar 

  6. Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119

    Article  Google Scholar 

  7. Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U (2012) Multidimensional optimality of microbial metabolism. Science 336:601–604

    Article  CAS  Google Scholar 

  8. Güell O, Massucci FA, Font-Clos F, Sagués F, Serrano MÁ (2015) Mapping high-growth phenotypes in the flux space of microbial metabolism. J R Soc Interface 12:20150543

    Article  Google Scholar 

  9. Lovász L (1999) Hit-and-run mixes fast. Math Progr. 86(3):443–461

    Article  Google Scholar 

  10. Orth JD et al (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism. Mol Syst Biol 7:535

    Article  Google Scholar 

  11. Pearson K (1901) LIII. On lines and planes of closest fit to systems of points in space. Philos Mag Ser 6 2(11):559–572

    Article  Google Scholar 

  12. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York

    Google Scholar 

  13. Fong S, Marciniak JY, Palsson BØ (2003) Description and interpretation of adaptive evolution of Escherichia coli K-12 MG1655 by using a genome-scale in silico metabolic model. J. Bacteriol. 185(21):6400–6408

    Article  CAS  Google Scholar 

  14. Edwards JS, Palsson BØ (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19:125–130

    Article  CAS  Google Scholar 

  15. Varma A, Boesch BW, Palsson BØ (1993) Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl Environ Microb 59:2465–2473

    CAS  Google Scholar 

  16. Reiling HE, Laurila H, Fiechter A (1985) Mass culture of Escherichia coli: medium development for low and high density cultivation of Escherichia coli B/r in minimal and complex media. J. Biotechnol. 2:191–206

    Article  CAS  Google Scholar 

  17. El-Mansi EM, Holms WH (1989) Control of carbon flux to acetate excretion during growth of Escherichia coli in batch and continuous cultures. J Gen Microbiol 135:2875–2883

    CAS  Google Scholar 

  18. Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol R 69:12–50

    Article  CAS  Google Scholar 

  19. Vázquez A, Beg QK, deMenezes MA, Ernst J, Bar-Joseph Z, Barabási AL, Boros LG, Oltvai ZN (2008) Impact of the solvent capacity constraint on E. coli metabolism. BMC Syst Biol 2:7

    Google Scholar 

  20. Varma A, Palsson BØ (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microb 60(10):3724–3731

    CAS  Google Scholar 

  21. Molenaar D, van Berlo R, de Ridder D, Teusink B (2009) Shifts in growth strategies reflect tradeoffs in cellular economics. Mol Syst Biol 5(1):323

    Google Scholar 

  22. Wortel MT, Peters H, Hulshof J, Teusink B, Bruggeman FJ (2014) Metabolic states with maximal specific rate carry flux through an elementary flux mode. FEBS J 281(6):1547–1555

    Article  CAS  Google Scholar 

  23. Losen M, Frolich B, Pohl M, Buchs J (2004) Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures. Biotechnol Progr 20:1062–1068

    Article  CAS  Google Scholar 

  24. Orencio-Trejo M, Utrilla J, Fernández-Sandoval MT, Huerta-Beristain G, Gosset G, Martinez A (2010) Engineering the Escherichia coli fermentative metabolism. Adv Biochem Eng Biot 121:71–107

    CAS  Google Scholar 

  25. Price ND, Shmulevich I (2007) Biochemical and statistical network models for systems biology. Curr Opin Biotech 18(4):365–370

    Article  CAS  Google Scholar 

  26. Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:501

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriol Güell .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Güell, O. (2017). Assessing FBA Optimal States in the Feasible Flux Phenotypic Space. In: A Network-Based Approach to Cell Metabolism. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-64000-6_6

Download citation

Publish with us

Policies and ethics