Skip to main content

Detection of Evolution and Adaptation Fingerprints in Metabolic Networks

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Metabolic fluxes present an heterogeneity that can be exploited to construct metabolic backbones as reduced versions of metabolic networks. These backbones can be analysed to extract important biological information. In this chapter, the disparity filter is applied to two organisms, Escherichia coli and Mycoplasma pneumoniae. Backbones offer information about long-term evolution since they contain the core of ancestral pathways related with energy obtainment optimized by evolution to maximize growth. At the same time, backbones unveil short-term adaptation capabilities to variable external stimuli.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabási AL (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427(6977):839–843

    Article  CAS  Google Scholar 

  2. Ma HW, Zeng AP (2003) The connectivity stucture, giant strong component and centrality of metabolic networks. Bioinformatics 19:1423–1430

    Article  CAS  Google Scholar 

  3. Barabási AL, Oltvai ZN (2004) Network biology: understanding the cells functional organization. Nat Rev Genet 5:101–113

    Article  Google Scholar 

  4. Herfindahl OC (1959) Copper costs and prices: 1870–1957. John Hopkins University Press, Baltimore

    Google Scholar 

  5. Hirschman AO (1964) The paternity of an index. Am Econ Rev 54:761–762

    Google Scholar 

  6. Serrano MÁ, Boguñá M, Vespignani A (2009) Extracting the mutiscale backbone of complex weighted networks. Proc Natl Acad Sci USA 106:6483–6488

    Article  CAS  Google Scholar 

  7. Barrat A, Barthélemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex weighted networks. Proc Natl Acad Sci USA 101(11):3747–3752

    Article  CAS  Google Scholar 

  8. Güell O, Sagués F, Serrano MÁ (2017) Detecting the significant flux backbone of Escherichia coli metabolism. FEBS Lett 591(10):1437–1451

    Google Scholar 

  9. Bianconi G (2008) Flux distribution of metabolic networks close to optimal biomass production. Phys Rev E 78(3):035101

    Article  Google Scholar 

  10. Serrano MÁ, De Los Rios P (2008) Structural efficiency of percolated landscapes in flow networks. PLoS ONE 3:e3654

    Article  Google Scholar 

  11. Orth JD et al (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism. Mol Syst Biol 7:535

    Article  Google Scholar 

  12. Keller MA, Turchyn AV, Ralser M (2014) Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean. Mol Syst Biol 10(4):725

    Article  Google Scholar 

  13. Meléndez-Hevia E, Waddell TG, Cascante M (1996) The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution. J Mol Evol 43(3):293–303

    Article  Google Scholar 

  14. Ebenhöh O, Heinrich R (2001) Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems. Bull Math Biol 63(1):21–55

    Article  Google Scholar 

  15. Mailloux RJ, Bériaut R, Lemire J, Singh R, Chénier DR, Hamel RD, Appanna VD (2007) The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS ONE 2(8):e690

    Article  Google Scholar 

  16. Fell DA, Wagner A (2000) The small world of metabolism. Nat Biotechnol 18:1121–1122

    Article  CAS  Google Scholar 

  17. Evans DR, Guy HI (2004) Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem 279(32):33035–33038

    Article  CAS  Google Scholar 

  18. Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459(7244):239–242

    Article  CAS  Google Scholar 

  19. Caetano-Anolles G, Kim HS, Mittenthal JE (2007) The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture. Proc Natl Acad Sci USA 104(22):9358–9363

    Article  CAS  Google Scholar 

  20. Suen S, Lu HHS, Yeang CH (2012) Evolution of domain architectures and catalytic functions of enzymes in metabolic systems. Genome Biol Evol 4(9):976–993

    Article  Google Scholar 

  21. Tadege M, Dupuis I, Kuhlemeier C (1999) Ethanolic fermentation: new functions for an old pathway. Trends Plant Sci 4(8):320–325

    Article  CAS  Google Scholar 

  22. Sezonov G, Joseleau-Petit D, D’Ari R (2007) Escherichia coli physiology in Luria-Bertani Broth. J Bacteriol 189:8746–8749

    Article  CAS  Google Scholar 

  23. Güell O, Sagués F, Serrano MÁ (2014) Essential plasticity and redundancy of metabolism unveiled by synthetic lethality analysis. PLoS Comput Biol 10(5):e1003637

    Article  Google Scholar 

  24. Tao H, Bausch C, Richmond C, Blattner FR, Conway T (1999) Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J Bacteriol 181(20):6425–6440

    CAS  Google Scholar 

  25. Lourenço A, Carneiro S, Pinto JP, Rocha M, Ferreira EC, Rocha I (2011) A study of the short and long-term regulation of E. coli metabolic pathways. J Integr Bioinform 8(3):195–209

    Google Scholar 

  26. Monk JM et al (2013) Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc Natl Acad Sci USA 110(50):20338–20343

    Article  CAS  Google Scholar 

  27. Serrano MÁ, Boguñá M, Sagués F (2012) Uncovering the hidden geometry behind metabolic networks. Mol BioSyst 8:843–850

    Article  CAS  Google Scholar 

  28. Bourqui R et al (2009) Metabolic network visualization eliminating node redundancy and preserving metabolic pathways. BMC Syst Biol 1:29

    Article  Google Scholar 

  29. Faust K, Dupont P, Callut J, van Helden J (2010) Pathway discovery in metabolic networks by subgraph extraction. Bioinformatics 26:1211–1218

    Article  CAS  Google Scholar 

  30. Basler G, Ebenhöh O, Selbig J, Nikoloski Z (2011) Mass-balanced randomization of metabolic networks. Bioinformatics 27:1397–1403

    Article  CAS  Google Scholar 

  31. Ibarra RU, Edwards JS, Palsson BØ (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420:186–189

    Article  CAS  Google Scholar 

  32. Blank LM, Kuepfer L, Sauer U (2005) Large-scale \(^{13}\)C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol 6(6):R49

    Article  Google Scholar 

  33. Llaneras F, Picó J (2008) Stoichiometric modelling of cell metabolism. J Biosci Bioeng 105(1):1–11

    Article  CAS  Google Scholar 

  34. Wodke JAH et al (2013) Dissecting the energy metabolism in Mycoplasma pneumoniae through genome-scale metabolic modeling. Mol Syst Biol 9:653

    Article  Google Scholar 

  35. Manolukas JT, Barile MF, Chandler DK, Pollack JD (1988) Presence of anaplerotic reactions and transamination, and the absence of the tricarboxylic acid cycle in mollicutes. J Gen Microbiol 134(3):791–800

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriol Güell .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Güell, O. (2017). Detection of Evolution and Adaptation Fingerprints in Metabolic Networks. In: A Network-Based Approach to Cell Metabolism. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-64000-6_5

Download citation

Publish with us

Policies and ethics