Skip to main content

Cellular Metabolism at the Systems Level

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter reviews basic concepts of cellular metabolism. First, an overall view of the architecture of cellular metabolism is given, from the large-scale of Catabolism and Anabolism to biochemical pathways, reactions, and metabolites. Fundamental concepts of chemical kinetics and thermodynamics are mentioned, followed by a brief consideration of key ideas about regulation, control, and evolution of metabolism. Finally, the need for a systems-level approach is discussed. Aims and objectives, together with an outline of this thesis, are included at the end of the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A phenotype is the composite of the observable characteristics of an organism, such as its morphology, development, biochemical or physiological properties.

  2. 2.

    In this context, basic refers to acid-base behavior.

  3. 3.

    Also called Krebs Cycle or Tricarboxylic Acid Cycle (TCA Cycle).

  4. 4.

    Thermodynamically speaking one should refer to \(\Delta G\), the change in Gibbs free energy (SI units J mol\(^{-1}\)). An approximate but convenient way is however to refer to \(\Delta G^{\text {o}}\), which denotes the free energy change in standard conditions of a reaction.

  5. 5.

    A protein kinase is a kind of enzyme which transfers phosphate groups from high-energy phosphate donor molecules to specific substrates. This process is called phosphorylation, not to be confused with the Oxidative Phosphorylation pathway described in Sect. 1.1.3.

  6. 6.

    Recombinant DNA molecules are DNA molecules engineered to assemble genetic material from multiple sources, creating sequences that would not otherwise be found in biological organisms.

References

  1. Lagerkvist U (2005) The enigma of ferment: from the philosopher’s stone to the first biochemical Nobel Prize. World Scientific

    Google Scholar 

  2. Van Holde KE (1971) Physical biochemistry, foundations of modern biochemistry series. Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

  3. Segura D, Mahadevan R, Juárez K, Lovley DR (2008) Computational and experimental analysis of redundancy in the central metabolism of Geobacter sulfurreducens. PLoS Comput Biol 4(2):e36

    Article  Google Scholar 

  4. Tucker CL, Fields S (2003) Lethal combinations. Nat Genet 35:204–205

    Article  CAS  Google Scholar 

  5. Barabási AL, Oltvai ZN (2004) Network biology: understanding the cells functional organization. Nat Rev Genet 5:101–113

    Article  Google Scholar 

  6. Deville Y, Gilbert D, Van Helden J, Wodak SJ (2003) An overview of data models for the analysis of biochemical pathways. Brief Bioinform 4(3):246–259

    Article  CAS  Google Scholar 

  7. Serrano MÁ, Boguñá M, Sagués F (2012) Uncovering the hidden geometry behind metabolic networks. Mol BioSyst 8:843–850

    Article  CAS  Google Scholar 

  8. Kitano H (2002a) Systems biology: a brief overview. Science 295(5560):1662–1664

    Article  CAS  Google Scholar 

  9. Kitano H (2002b) Computational systems biology. Nature 420(6912):206–210

    Article  CAS  Google Scholar 

  10. Palsson BØ (2006) Systems biology: properties of reconstructed networks. Cambridge University Press

    Google Scholar 

  11. Alon U (2006) An introduction to systems biology: design principles of biological circuits. CRC Press

    Google Scholar 

  12. Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabási AL (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427(6977):839–843

    Article  CAS  Google Scholar 

  13. Borenstein E, Kupiec M, Feldman MW, Ruppin E (2008) Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc Natl Acad Sci USA 105(38):14482–14487

    Article  CAS  Google Scholar 

  14. Barrat A, Barthélemy D, Vespignani A (2008) Dynamical processes on complex networks. Cambridge University Press

    Google Scholar 

  15. Newman M (2010) Networks: an introduction. Oxford University Press

    Google Scholar 

  16. Mathews CK, Van Holde KE, Ahern KG (2002) Bioquímica. Pearson Education

    Google Scholar 

  17. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56(3):658–666

    Article  CAS  Google Scholar 

  18. Emmerling M et al (2002) Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J Bacteriol 184(1):152–164

    Article  CAS  Google Scholar 

  19. Steck TL (1974) The organization of proteins in the human red blood cell membrane. A Rev J Cell Biol 62(1):1–19

    Article  CAS  Google Scholar 

  20. Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37(1):1–17

    Article  Google Scholar 

  21. Fitzpatrick LC (1976) Life history patterns of storage and utilization of lipids for energy in amphibians. Am Zool 16(4):725–732

    Article  CAS  Google Scholar 

  22. Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9(7):484–496

    CAS  Google Scholar 

  23. Marrink SJ, Berendsen HJ (1994) Simulation of water transport through a lipid membrane. J Phys Chem 98(15):4155–4168

    Article  CAS  Google Scholar 

  24. Bauchop T, Elsden SR (1960) The growth of micro-organisms in relation to their energy supply. J Gen Microiol 23(3):457–469

    CAS  Google Scholar 

  25. Good CA, Kramer H, Somogyi M (1933) The determination of glycogen. J Biol Chem 100(2):485–491

    CAS  Google Scholar 

  26. Neidle S (2010) Principles of nucleic acid structure. Academic Press

    Google Scholar 

  27. Carver JD, Allan Walker W (1995) The role of nucleotides in human nutrition. J Nutr Biochem 6(2):58–72

    Article  CAS  Google Scholar 

  28. Bergman J (1999) ATP: the perfect energy currency for the cell. Creat Res Soc Q 36(1):2–9

    Google Scholar 

  29. Belenky P, Bogan KL, Brenner C (2007) NAD\(^+\) metabolism in health and disease. Trends Biochem Sci 32(1):12–19

    Article  CAS  Google Scholar 

  30. Pollak N, Dolle C, Ziegler M (2007) The power to reduce: pyridine nucleotides-small molecules with a multitude of functions. Biochem J 402:205–218

    Article  CAS  Google Scholar 

  31. Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms. Experientia 46(8):834–840

    Article  CAS  Google Scholar 

  32. Ariño J, Ramos J, Sychrová H (2010) Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev 74(1):95–120

    Article  Google Scholar 

  33. Sychrova H (2004) Yeast as a model organism to study transport and homeostasis of alkali metal cations. Physiol Res 53:S91–98

    CAS  Google Scholar 

  34. Chen H, Ikeda-Saito M, Shaik S (2008) Nature of the Fe-O\(_2\) bonding in oxy-myoglobin: effect of the protein. J Am Chem Soc 130(44):14778–14790

    Article  CAS  Google Scholar 

  35. Tadege M, Dupuis I, Kuhlemeier C (1999) Ethanolic fermentation: new functions for an old pathway. Trends Plant Sci 4(8):320–325

    Article  CAS  Google Scholar 

  36. Criado-Sancho M, Casas-Vázquez J (1998) Termodinámica química y de los procesos irreversibles. Pearson

    Google Scholar 

  37. Moffatt BA, Ashihara H (2002) Purine and pyrimidine nucleotide synthesis and metabolism. In: The arabidopsis book. American Society of Plant Physiologists, pp 1–20

    Google Scholar 

  38. Harvey WR, Cioffi M, Dow JA, Wolfersberger MG (1983) Potassium ion transport ATPase in insect epithelia. J Exp Biol 106(1):91–117

    CAS  Google Scholar 

  39. Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Biochem Z 49(333–369):352

    Google Scholar 

  40. Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol (Lond) 40:4–7

    Google Scholar 

  41. Crane RK, Miller D, Bihler I (1961) The restrictions on possible mechanisms of intestinal active transport of sugars, pp 439–449

    Google Scholar 

  42. Prigogine I (1955) Thermodynamics of irreversible processes. Thomas

    Google Scholar 

  43. Demirel Y, Sandler SI (2002) Thermodynamics and bioenergetics. Biophys Chem 97(2):87–111

    Article  CAS  Google Scholar 

  44. Desvergne B, Michalik L, Wahli W (2006) Transcriptional regulation of metabolism. Physiol Rev 86:465–514

    Article  CAS  Google Scholar 

  45. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and \(\beta \)-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419

    Article  CAS  Google Scholar 

  46. Lienhard GE, Slot JW, James DE, Mueckler MM (1992) How cells absorb glucose. Sci Am 266(1):86–91

    Article  CAS  Google Scholar 

  47. Fell D (1997) Understanding the control of metabolism. Portland Press

    Google Scholar 

  48. Theobald DL (2010) A formal test of the theory of universal common ancestry. Nature 465(7295):219–222

    Article  CAS  Google Scholar 

  49. Ibarra RU, Edwards JS, Palsson BØ (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420:186–189

    Article  CAS  Google Scholar 

  50. Fong S, Marciniak JY, Palsson BØ (2003) Description and interpretation of adaptive evolution of Escherichia coli K-12 MG1655 by using a genome-scale in silico metabolic model. J Bacteriol 185(21):6400–6408

    Article  CAS  Google Scholar 

  51. Schmidt S, Sunyaev S, Bork P, Dandekar T (2003) Metabolites: a helping hand for pathway evolution? Trends Biochem Sci 28(6):336–341

    Article  CAS  Google Scholar 

  52. Kay E, Vogel TM, Bertolla F, Nalin R, Simonet P (2002) In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl Environ Microb 68(7):3345–3351

    Article  CAS  Google Scholar 

  53. Rando OJ, Verstrepen KJ (2007) Timescales of genetic and epigenetic inheritance. Cell 128(4):655–668

    Article  CAS  Google Scholar 

  54. Lancaster AK, Masel J (2009) The evolution of reversible switches in the presence of irreversible mimics. Evolution 63(9):2350–2362

    Article  Google Scholar 

  55. Lawrence JG (2005) Common themes in the genome strategies of pathogens. Curr Opin Genet Dev 15(6):584–588

    Article  CAS  Google Scholar 

  56. Wodke JAH et al (2013) Dissecting the energy metabolism in Mycoplasma pneumoniae through genome-scale metabolic modeling. Mol Syst Biol 9:653

    Article  Google Scholar 

  57. Oberhardt MA, Palsson BØ, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5(1)

    Google Scholar 

  58. Kim TY, Sohn SB, Kim YB, Kim WJ, Lee SY (2012) Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotech 23(4):617–623

    Article  CAS  Google Scholar 

  59. Güell O, Serrano MÁ, Sagués F (2014) Environmental dependence of the activity and essentiality of reactions in the metabolism of Escherichia coli. In: Engineering of Chemical Complexity II. World Scientific Publishing, pp 39–56. ISBN 978-981-4616-12-6

    Google Scholar 

  60. Thiele I, Palsson BØ (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121

    Article  CAS  Google Scholar 

  61. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucl Acids Res 28(1):27–30

    Article  CAS  Google Scholar 

  62. Caspi R et al (2012) The metacyc database of metabolic pathways and enzymes and the biocyc collection of pathway/genome databases. Nucl Acids Res 40(D1):D742–D753

    Article  CAS  Google Scholar 

  63. Schellenberger J, Park JO, Conrad TC, Palsson BØ (2010) BiGG: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinform 11:213

    Article  Google Scholar 

  64. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    Article  CAS  Google Scholar 

  65. Edwards JS, Palsson BØ (1999) Systems properties of the haemophilus influenzaerd metabolic genotype. J Biol Chem 274(25):17410–17416

    Article  CAS  Google Scholar 

  66. Duarte NC, Herrgard MJ, Palsson BØ (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14:1298–1309

    Article  CAS  Google Scholar 

  67. Becker SA, Palsson BØ (2005) Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol 5:8

    Article  Google Scholar 

  68. Thiele I, Vo TD, Price ND, Palsson BØ (2005) Expanded metabolic reconstruction of Helicobacter pylori ( iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J Bacteriol 187:5818–5830

    Article  CAS  Google Scholar 

  69. Feist AM, Scholten JCM, Palsson BØ, Brockman FJ, Ideker T (2006) Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol Syst Biol 2:2006.0004

    Google Scholar 

  70. Jamshidi N, Palsson BØ (2007) Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol 1:26

    Article  Google Scholar 

  71. Feist AM, Palsson BØ (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 26(6):659–667

    Article  CAS  Google Scholar 

  72. McCloskey D, Palsson BØ, Feist AM (2013) Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol Syst Biol 9(1)

    Google Scholar 

  73. Fernández N, Díaz EE, Amils R, Sanz JL (2008) Analysis of microbial community during biofilm development in an anaerobic wastewater treatment reactor. Microb Ecol 56(1):121–132

    Article  Google Scholar 

  74. Zomorrodi AR, Maranas CD (2012) OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol 8(2):e1002363

    Article  CAS  Google Scholar 

  75. Bordbar A, Lewis NE, Schellenberger J, Palsson BØ, Jamshidi N (2010) Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol Syst Biol 6(1)

    Google Scholar 

  76. Persidis A (1998) High-throughput screening. Nat Biotechnol 16(5):488

    Article  CAS  Google Scholar 

  77. Bailey JE, Birnbaum S, Galazzo JL, Khosla C, Shanks JV (1990) Strategies and challenges in metabolic engineering. Ann NY Acad Sci 589(1):1–15

    Article  CAS  Google Scholar 

  78. Park JH, Lee SY (2008) Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol 19(5):454–460

    Article  CAS  Google Scholar 

  79. Zelle RM et al (2008) Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 74(9):2766–2777

    Article  CAS  Google Scholar 

  80. Izallalen M, Mahadevan R, Burgard A, Postier B Jr, Didonato R, Sun J, Schilling CH (2008) Geobacter sulfurredonces strain engineered for increased rates of respiration. Metab Eng 10:267–275

    Article  CAS  Google Scholar 

  81. Mesarović MD (1968) Systems theory and biology—view of a theoretician. Springer

    Google Scholar 

  82. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genom Hum G 2(1):343–372

    Article  CAS  Google Scholar 

  83. Gierasch LM, Gershenson A (2009) Post-reductionist protein science, or putting Humpty Dumpty back together again. Nat Chem Biol 5(11):774–777

    Article  CAS  Google Scholar 

  84. Westerhoff HV, Palsson BØ (2004) The evolution of molecular biology into systems biology. Nat Biotechnol 22(10):1249–1252

    Article  CAS  Google Scholar 

  85. Kriete A, Eils R (2005) Computational systems biology. Academic Press

    Google Scholar 

  86. Kitano H (2005) International alliances for quantitative modeling in systems biology. Mol Syst Biol 1(1)

    Google Scholar 

  87. Krömer J, Quek LE, Nielsen L (2009) \(^{13}\)C-Fluxomics: a tool for measuring metabolic phenotypes. Aust Biochem 40(3):17–20

    Google Scholar 

  88. Winter G, Krömer JO (2013) Fluxomics-connecting ‘omics analysis and phenotypes. Environ Microbiol 15(7):1901–1916

    Article  CAS  Google Scholar 

  89. Kun A, Papp B, Szathmáry E (2008) Computational identification of obligatorily autocatalytic replicators embedded in metabolic networks. Genome Biol 9(3):R51

    Article  Google Scholar 

  90. Nishikawa T, Gulbahce N, Motter AE (2008) Spontaneous reaction silencing in metabolic optimization. PLoS Comput Biol 4(12):e1000236

    Article  Google Scholar 

  91. Guimerà R, Sales-Pardo M, Amaral LAN (2007) A network-based method for target selection in metabolic networks. Bioinformatics 23(13):1616–1622

    Article  Google Scholar 

  92. Papp B, Teusink B, Notebaart RA (2009) A critical view of metabolic network adaptations. HFSP J 3(1):24–35

    Article  Google Scholar 

  93. Guimerà R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895–900

    Article  Google Scholar 

  94. Serrano MÁ, Boguñá M, Sagués F (2011) Network-based confidence scoring system for genome-scale metabolic reconstructions. BMC Syst Biol 5:76

    Article  Google Scholar 

  95. Güell O, Sagués F, Serrano MÁ (2012) Predicting effects of structural stress in a genome-reduced model bacterial metabolism. Sci Rep 2:621

    Article  Google Scholar 

  96. Serrano MÁ, Boguñá M, Vespignani A (2009) Extracting the mutiscale backbone of complex weighted networks. Proc Natl Acad Sci USA 106:6483–6488

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriol Güell .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Güell, O. (2017). Cellular Metabolism at the Systems Level. In: A Network-Based Approach to Cell Metabolism. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-64000-6_1

Download citation

Publish with us

Policies and ethics