Advertisement

Performance and Results

  • Hani Saleh
  • Nourhan Bayasi
  • Baker Mohammad
  • Mohammed Ismail
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

The chapter discusses the performance of the presented system. The high-level simulation results are presented, and then a detailed comparison with the published work is given. The chapter is concluded by presenting the obtained results from the first chip tapeout of the introduced system.

Keywords

Sensitivity Predictivity True Positive False Positive False Negative True Negative Performance Tapeout 

Bibliography

  1. 62.
    A.L. Goldberger, L.A. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.-K. Peng, H.E. Stanley, Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)CrossRefGoogle Scholar
  2. 75.
    P.S. Hamilton, W.J. Tompkins, Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Trans. Biomed. Eng. 33(12), 1157–1165 (1986)CrossRefGoogle Scholar
  3. 76.
    J.P. Martínez, R. Almeida, S. Olmos, A.P. Rocha, P. Laguna, A wavelet-based ECG delineator: Evaluation on standard databases. IEEE Trans. Biomed. Eng. 51(4), 570–581 (2004)CrossRefGoogle Scholar
  4. 77.
    A. Cost, G.G. Cano, QRS detection based on hidden markov modeling, in Engineering in Medicine and Biology Society, 1989. Images of the Twenty-First Century., Proceedings of the Annual International Conference of the IEEE Engineering in (IEEE, 1989), p. 34–35Google Scholar
  5. 78.
    E.B. Mazomenos, D. Biswas, A. Acharyya, T. Chen, K. Maharatna, J. Rosengarten, J. Morgan, N. Curzen, A low-complexity ECG feature extraction algorithm for mobile healthcare applications. IEEE J. Biomed. Health Inform. 17(2), 459–469 (2013)CrossRefGoogle Scholar
  6. 79.
    E. Mazomenos, T. Chen, A. Acharyya, A. Bhattacharya, J. Rosengarten, K. Maharatna, A time-domain morphology and gradient based algorithm for ECG feature extraction, in Industrial Technology (ICIT), 2012 IEEE International Conference on (IEEE, 2012), p. 117–122Google Scholar
  7. 80.
    R.V. Andreão, B. Dorizzi, J. Boudy, ECG signal analysis through hidden Markov models. IEEE Trans. Biomed. Eng. 53(8), 1541–1549 (2006)CrossRefGoogle Scholar
  8. 81.
    Y. Sun, K.L. Chan, S.M. Krishnan, Characteristic wave detection in ECG signal using morphological transform. BMC Cardiovasc. Disord. 5(1), 28 (2005)CrossRefGoogle Scholar
  9. 82.
    P. Laguna, R.G. Mark, A. Goldberg, G.B. Moody, A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG, in Computers in Cardiology 1997 (IEEE, Piscataway, 1997), pp. 673–676Google Scholar
  10. 24.
    P. De Chazal, M. O’Dwyer, R.B. Reilly, Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)CrossRefGoogle Scholar
  11. 26.
    A. Amann, R. Tratnig, K. Unterkofler, Detecting ventricular fibrillation by time-delay methods. IEEE Trans. Biomed. Eng. 54(1), 174–177 (2007)CrossRefGoogle Scholar
  12. 34.
    F. Alonso-Atienza, E. Morgado, L. Fernandez-Martinez, A. García-Alberola, J. Rojo-Alvarez, Detection of life-threatening arrhythmias using feature selection and support vector machines. I.E.E.E. Trans. Biomed. Eng. 61(3), 832–840 (2014)CrossRefGoogle Scholar
  13. 70.
    Q. Li, C. Rajagopalan, G. Clifford, Ventricular fibrillation and tachycardia classification using machine learning method. I.E.E.E. Trans. Biomed. Eng. 61(6), 1607–1613 (2013)Google Scholar
  14. 83.
    O. Sayadi, M.B. Shamsollahi, G.D. Clifford, Robust detection of premature ventricular contractions using a wave-based bayesian framework. IEEE Trans. Biomed. Eng. 57(2), 353–362 (2010)CrossRefGoogle Scholar
  15. 4.
    S. Lee, J. Hong, K. Lin, C. Hsieh, M. Liang, S. Chien, Low-power wireless ECG acquisition and classification system for body sensor networks. IEEE J. Biomed. Health Inform. 19(1), 236–246 (2015)CrossRefGoogle Scholar
  16. 5.
    Y.-P. Chen, D. Jeon, Y. Lee, Y. Kim, Z. Foo, I. Lee, N.B. Langhals, G. Kruger, H. Oral, O. Berenfeld, et al., An injectable 64 nw ECG mixed-signal SoC in 65 nm for arrhythmia monitoring. IEEE J. Solid State Circuits 50(1), 375–390 (2015)CrossRefGoogle Scholar
  17. 59.
    H. Kim, R.F. Yazicioglu, T. Torfs, P. Merken, H.-J. Yoo, C. Van Hoof, A low power ECG signal processor for ambulatory arrhythmia monitoring system, in VLSI Circuits (VLSIC), 2010 IEEE Symposium on (IEEE, 2010), p. 19–20Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Hani Saleh
    • 1
  • Nourhan Bayasi
    • 2
  • Baker Mohammad
    • 1
  • Mohammed Ismail
    • 3
  1. 1.Department of Electronic EngineeringKhalifa University of Science, Technology and ResearchAbu DhabiUnited Arab Emirates
  2. 2.Department of Electrical and Computer EngineeringKhalifa University of Science, Technology and ResearchAbu DhabiUnited Arab Emirates
  3. 3.Department of Electrical and Computer Engineering DepartmentKhalifa University of Science, Technology and ResearchAbu DhabiUnited Arab Emirates

Personalised recommendations