System Design and Development

  • Hani Saleh
  • Nourhan Bayasi
  • Baker Mohammad
  • Mohammed Ismail
Part of the Analog Circuits and Signal Processing book series (ACSP)


The chapter introduces an automated system for prediction and detection of cardiac arrhythmias especially VT/VF. The system is overviewed, next the ECG signal processing specifics are covered, and then the feature extraction process is explained. The chapter is concluded by explaining features of the classification system.


ECG Signal Delineation QRS Complex Detection ECG signal Databases T and P waves Short-Term ECG features Statistical Analysis Naive Bayes Classifier 


  1. 61.
    J. Zhang, P.V. Orlik, Z. Sahinoglu, A.F. Molisch, P. Kinney, UWB systems for wireless sensor networks. Proc. IEEE 97(2), 313–331 (2009)CrossRefGoogle Scholar
  2. 62.
    A.L. Goldberger, L.A. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.-K. Peng, H.E. Stanley, Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)CrossRefGoogle Scholar
  3. 63.
    J. J. Nobel. (Online). Available:
  4. 64.
    J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32(3), 230–236 (1985)CrossRefGoogle Scholar
  5. 65.
    N. Bayasi, T. Tekeste, H. Saleh, A. Khandoker, B. Mohammad, M. Ismail, Adaptive technique for P and T wave delineation in electrocardiogram signals, in Engineering in Medicine and Biology Society, 2014. International Conference of the IEEE (2014)Google Scholar
  6. 66.
    T. Heeren, R. D’Agostino, Robustness of the two independent samples t-test when applied to ordinal scaled data. Stat. Med. 6(1), 79–90 (1987)CrossRefGoogle Scholar
  7. 67.
    D.B. Panagiotakos, The value of p-value in biomedical research. Open Cardiovasc. Med. J. 2, 97 (2008)CrossRefGoogle Scholar
  8. 68.
    R. Kumar, A. Indrayan, Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatr. 48(4), 277–287 (2011)CrossRefGoogle Scholar
  9. 69.
    M.S. Finkler, Lab 10: Cardiovascular Physiology (Indian University), pp. 1–5Google Scholar
  10. 24.
    P. De Chazal, M. O’Dwyer, R.B. Reilly, Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)CrossRefGoogle Scholar
  11. 34.
    F. Alonso-Atienza, E. Morgado, L. Fernandez-Martinez, A. García-Alberola, J. Rojo-Alvarez, Detection of life-threatening arrhythmias using feature selection and support vector machines. I.E.E.E. Trans. Biomed. Eng. 61(3), 832–840 (2014)CrossRefGoogle Scholar
  12. 70.
    Q. Li, C. Rajagopalan, G. Clifford, Ventricular fibrillation and tachycardia classification using machine learning method. I.E.E.E. Trans. Biomed. Eng. 61(6), 1607–1613 (2013)Google Scholar
  13. 71.
    H. Wang, T.M. Khoshgoftaar, K. Gao, A comparative study of filter-based feature ranking techniques, in Information Reuse and Integration (IRI), 2010 IEEE International Conference on (IEEE, 2010), p. 43–48Google Scholar
  14. 72.
    G. Forman, An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 3, 1289–1305 (2003)zbMATHGoogle Scholar
  15. 73.
    C. Pillers Dobler, Mathematical statistics: basic ideas and selected topics. Am. Stat. 56(4), 332–332 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Hani Saleh
    • 1
  • Nourhan Bayasi
    • 2
  • Baker Mohammad
    • 1
  • Mohammed Ismail
    • 3
  1. 1.Department of Electronic EngineeringKhalifa University of Science, Technology and ResearchAbu DhabiUnited Arab Emirates
  2. 2.Department of Electrical and Computer EngineeringKhalifa University of Science, Technology and ResearchAbu DhabiUnited Arab Emirates
  3. 3.Department of Electrical and Computer Engineering DepartmentKhalifa University of Science, Technology and ResearchAbu DhabiUnited Arab Emirates

Personalised recommendations