Advertisement

Literature Review

  • Hani Saleh
  • Nourhan Bayasi
  • Baker Mohammad
  • Mohammed Ismail
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

The chapter starts by highlighting the severity of cardiovascular disease problem; then it shed the light on the most relevant published research in the area of cardiovascular disease diagnostic. ECG filtering is reviewed, followed by ECG feature extraction technique overview, and ECG feature classification methods are briefly introduced. The chapter concludes by a review of some of the relevant published work on hardware implementation for ECG signal processing systems.

Keywords

Cardiovascular Diseases (CVDs) ECG Filtering Feature Extraction Classification Techniques and Hardware Implementation 

Bibliography

  1. 14.
    I. Kuon, J. Rose, Measuring the gap between FPGAS and ASICS. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(2), 203–215 (2007)CrossRefGoogle Scholar
  2. 3.
    A.S. Go, D. Mozaffarian, V.L. Roger, E.J. Benjamin, J.D. Berry, M.J. Blaha, S. Dai, E.S. Ford, C.S. Fox, S. Franco, et al., Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129(3), e28 (2014)CrossRefGoogle Scholar
  3. 15.
    M. Mneimneh, E. Yaz, M. Johnson, R. Povinelli, An adaptive Kalman filter for removing baseline wandering in ECG signals, in Computers in Cardiology, 2006 (IEEE, 2006), p. 253–256Google Scholar
  4. 16.
    X. Hu, Z. Xiao, N. Zhang, Removal of baseline wander from ECG signal based on a statistical weighted moving average filter. J. Zhejiang Univ. Sci. C 12(5), 397–403 (2011)CrossRefGoogle Scholar
  5. 17.
    B.-S. Lin, B.-S. Lin, W.-C. Lee, F.-C. Chong, Y.-D. Lin, Removing residual power-line interference using WHT adaptive filter, in Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint, vol. 1 (IEEE, 2002), p. 155–156Google Scholar
  6. 18.
    Z. Zhidong, M. Chan, A novel cancellation method of powerline interference in ECG signal based on EMD and adaptive filter, in 2008 11th IEEE International Conference on Communication Technology (2008), p. 517–520Google Scholar
  7. 19.
    H. Bharath, K. Prabhu, A new LMS based adaptive interference canceller for ECG power line removal, in Biomedical Engineering (ICoBE), 2012 International Conference on (IEEE, 2012), p. 68–73Google Scholar
  8. 20.
    Z.-D. Zhao, Y.-Q. Chen, A new method for removal of baseline wander and power line interference in ECG signals, in Machine Learning and Cybernetics, 2006 International Conference on (IEEE, 2006), p. 4342–4347Google Scholar
  9. 21.
    J. Mateo, C. Sánchez, A. Tortes, R. Cervigon, J. Rieta, Neural network based canceller for powerline interference in ECG signals, in Computers in Cardiology, 2008, (IEEE, 2008), pp. 1073–1076Google Scholar
  10. 22.
    K. Chan, Y. Zhang, Adaptive reduction of motion artifact from photo-plethysmographic recordings using a variable step-size LMS filter, in Sensors, 2002. Proceedings of IEEE, vol. 2 (IEEE, 2002), p. 1343–1346Google Scholar
  11. 23.
    S. Seyedtabaii, L. Seyedtabaii, Kalman filter based adaptive reduction of motion artifact from photoplethysmographic signal, in Proceedings of World Academy of Science, Engineering and Technology, vol. 27 (Citeseer, 2008)Google Scholar
  12. 24.
    P. De Chazal, M. O’Dwyer, R.B. Reilly, Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)CrossRefGoogle Scholar
  13. 25.
    A.H. Khandoker, M.H. Imam, J.P. Couderc, M. Palaniswami, J.F. Jelinek, QT variability index changes with severity of cardiovascular autonomic neuropathy. IEEE Trans. Inf. Technol. Biomed. 16(5), 900–906 (2012)CrossRefGoogle Scholar
  14. 26.
    A. Amann, R. Tratnig, K. Unterkofler, Detecting ventricular fibrillation by time-delay methods. IEEE Trans. Biomed. Eng. 54(1), 174–177 (2007)CrossRefGoogle Scholar
  15. 27.
    S. Barro, R. Ruiz, D. Cabello, J. Mira, Algorithmic sequential decision-making in the frequency domain for life threatening ventricular arrhythmias and imitative artefacts: a diagnostic system. J. Biomed. Eng. 11(4), 320–328 (1989)CrossRefGoogle Scholar
  16. 28.
    R.J. Oweis, E.W. Abdulhay, Seizure classification in EEG signals utilizing Hilbert-Huang transform. Biomed. Eng. Online 10(1), 38 (2011)CrossRefGoogle Scholar
  17. 29.
    I. Murthy, G. Prasad, Analysis of ECG from pole-zero models. IEEE Trans. Biomed. Eng. 39(7), 741–751 (1992)CrossRefGoogle Scholar
  18. 30.
    S.S. Mehta, N.S. Lingayat, Detection of P and T-Waves in Electrocardiogram (2008)Google Scholar
  19. 31.
    X.-S. Zhang, Y.-S. Zhu, N.V. Thakor, Z.-Z. Wang, Detecting ventricular tachycardia and fibrillation by complexity measure. IEEE Trans. Biomed. Eng. 46(5), 548–555 (1999)CrossRefGoogle Scholar
  20. 32.
    H. Li, W. Han, C. Hu, M.-H. Meng, Detecting ventricular fibrillation by fast algorithm of dynamic sample entropy, in Robotics and Biomimetics (ROBIO), 2009 IEEE International Conference on (IEEE, 2009), p. 1105–1110Google Scholar
  21. 33.
    S. Caswell Schuckers, Approximate entropy as a measure of morphologic variability for ventricular tachycardia and fibrillation, in Computers in Cardiology 1998 (IEEE, Long Beach, 1998), p. 265–268Google Scholar
  22. 34.
    F. Alonso-Atienza, E. Morgado, L. Fernandez-Martinez, A. García-Alberola, J. Rojo-Alvarez, Detection of life-threatening arrhythmias using feature selection and support vector machines. I.E.E.E. Trans. Biomed. Eng. 61(3), 832–840 (2014)CrossRefGoogle Scholar
  23. 35.
    I. Jekova, Shock advisory tool: detection of life-threatening cardiac arrhythmias and shock success prediction by means of a common parameter set. Biomed. Signal Process. Control 2(1), 25–33 (2007)CrossRefGoogle Scholar
  24. 36.
    Y. Ma, G. Guo, Support Vector Machines Applications (Springer, 2014)Google Scholar
  25. 37.
    K. Polat, B. Akdemir, S. Güneş, Computer aided diagnosis of ECG data on the least square support vector machine. Digital Signal Process. 18(1), 25–32 (2008)CrossRefGoogle Scholar
  26. 38.
    E.D. Übeyli, Support vector machines for detection of electrocardiographic changes in partial epileptic patients. Eng. Appl. Artif. Intell. 21(8), 1196–1203 (2008)CrossRefGoogle Scholar
  27. 39.
    B.M. Asl, S.K. Setarehdan, M. Mohebbi, Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artif. Intell. Med. 44(1), 51–64 (2008)CrossRefGoogle Scholar
  28. 40.
    J.S. Yadav, M. Yadav, A. Jain, Artificial neural network. Int. J. Sci. Res. Educ 1(06), 108–117 (2014)Google Scholar
  29. 41.
    S.M. Jadhav, S.L. Nalbalwar, A.A. Ghatol, Generalized feedforward neural network based cardiac arrhythmia classification from ECG signal data, in Advanced Information Management and Service (IMS), 2010 6th International Conference on (IEEE, 2010), p. 351–356Google Scholar
  30. 42.
    B. Anuradha, V.V. Reddy, ANN for classification of cardiac arrhythmias. ARPN J. Eng. Appl. Sci. 3(3), 1–6 (2008)Google Scholar
  31. 43.
    E.D. Übeyli, Combining recurrent neural networks with eigenvector methods for classification of ECG beats. Digital Signal Process. 19(2), 320–329 (2009)CrossRefGoogle Scholar
  32. 44.
    S.R. Eddy, What is a hidden Markov model? Nat. Biotechnol. 22(10), 1315–1316 (2004)CrossRefGoogle Scholar
  33. 45.
    W. Cheng, K. Chan, Classification of electrocardiogram using hidden markov models, in Engineering in Medicine and Biology Society, 1998. Proceedings of the 20th Annual International Conference of the IEEE (IEEE, 1998), p. 143–146Google Scholar
  34. 46.
    D.M. Witten, R. Tibshirani, Penalized classification using fisher’s linear discriminant. J. R. Stat. Soc. Ser. B Stat. Methodol. 73(5), 753–772 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 47.
    J.-S. Wang, W.-C. Chiang, Y.-T. Yang, Y.-L. Hsu, An effective ECG arrhythmia classification algorithm, in Bio-Inspired Computing and Applications (Springer, 2012), p. 545–550Google Scholar
  36. 48.
    M. Elgendi, M. Jonkman, F. De Boer, Premature atrial complexes detection using the fisher linear discriminant, in Cognitive Informatics, 2008. ICCI 2008. 7th IEEE International Conference on (IEEE, 2008), p. 83–88Google Scholar
  37. 49.
    Y.-C. Yeh, W.-J. Wang, C.W. Chiou, Cardiac arrhythmia diagnosis method using linear discriminant analysis on ECG signals. Measurement 42(5), 778–789 (2009)CrossRefGoogle Scholar
  38. 50.
    S. Kharya, S. Agrawal, S. Soni, Naive Bayes classifiers: a probabilistic detection model for breast cancer. Int. J. Comput. Appl. 92(10), 26–31 (2014)Google Scholar
  39. 51.
    J. Huang, J. Lu, C.X. Ling, Comparing naive bayes, decision trees, and svm with auc and accuracy, in Data Mining, 2003. ICDM 2003. Third IEEE International Conference on (IEEE, 2003), p. 553–556Google Scholar
  40. 52.
    M. Wiggins, A. Saad, B. Litt, G. Vachtsevanos, Evolving a Bayesian classifier for ECG-based age classification in medical applications. Appl. Soft Comput. 8(1), 599–608 (2008)CrossRefGoogle Scholar
  41. 53.
    A.M. Alturki, A.M. Al-Ghamdi, K. Daqrouq, R. Al-Hmouz, Application of ECG arrhythmia classification by means of Bayesian theorem. J. Appl. Sci. 14(2), 165–170 (2014)CrossRefGoogle Scholar
  42. 54.
    L.A. Zadeh, Fuzzy sets. Inf. Control. 8(3), 338–353 (1965)CrossRefzbMATHGoogle Scholar
  43. 55.
    M.G. Voskoglou, Case-based reasoning: a recent theory for problem-solving and learning in computers and people, in The Open Knowledge Society. A Computer Science and Information Systems Manifesto (Springer, Berlin, Heidelberg, 2008), p. 314–319Google Scholar
  44. 56.
    A. Sengur, I. Turkoglu, A hybrid method based on artificial immune system and fuzzy k-NN algorithm for diagnosis of heart valve diseases. Expert Syst. Appl. 35(3), 1011–1020 (2008)CrossRefGoogle Scholar
  45. 57.
    T.-F. Chiu. C-W. Chu, J.-L. Wu, A hybrid case-based reasoning approach for the electrocardiogram diagnosis, in Proceeding of the 7th World Multiconference on Systemics (IEEE, 2003), p. 93–98Google Scholar
  46. 58.
    B.-Y. Shiu, S.-W. Wang, Y.-S. Chu, T.-H. Tsai, Low-power low-noise ECG acquisition system with dsp for heart disease identification, in Biomedical Circuits and Systems Conference (BioCAS), 2013 IEEE (IEEE, 2013), p. 21–24Google Scholar
  47. 59.
    H. Kim, R.F. Yazicioglu, T. Torfs, P. Merken, H.-J. Yoo, C. Van Hoof, A low power ECG signal processor for ambulatory arrhythmia monitoring system, in VLSI Circuits (VLSIC), 2010 IEEE Symposium on (IEEE, 2010), p. 19–20Google Scholar
  48. 60.
    H. Kim, R.F. Yazicioglu, P. Merken, C. Van Hoof, H.-J. Yoo, ECG signal compression and classification algorithm with quad level vector for ECG holter system. IEEE Trans. Inf. Technol. Biomed. 14(1), 93–100 (2010)CrossRefGoogle Scholar
  49. 13.
    M. Nambakhsh, V. Tavakoli, N. Sahba et al., FPGA-core defibrillator using wavelet-fuzzy ECG arrhythmia classification, in Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE (IEEE, 2008), p. 2673–2676Google Scholar
  50. 4.
    S. Lee, J. Hong, K. Lin, C. Hsieh, M. Liang, S. Chien, Low-power wireless ECG acquisition and classification system for body sensor networks. IEEE J. Biomed. Health Inform. 19(1), 236–246 (2015)CrossRefGoogle Scholar
  51. 5.
    Y.-P. Chen, D. Jeon, Y. Lee, Y. Kim, Z. Foo, I. Lee, N.B. Langhals, G. Kruger, H. Oral, O. Berenfeld, et al., An injectable 64 nW ECG mixed-signal SoC in 65 nm for arrhythmia monitoring. IEEE J. Solid State Circuits 50(1), 375–390 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Hani Saleh
    • 1
  • Nourhan Bayasi
    • 2
  • Baker Mohammad
    • 1
  • Mohammed Ismail
    • 3
  1. 1.Department of Electronic EngineeringKhalifa University of Science, Technology and ResearchAbu DhabiUnited Arab Emirates
  2. 2.Department of Electrical and Computer EngineeringKhalifa University of Science, Technology and ResearchAbu DhabiUnited Arab Emirates
  3. 3.Department of Electrical and Computer Engineering DepartmentKhalifa University of Science, Technology and ResearchAbu DhabiUnited Arab Emirates

Personalised recommendations