Skip to main content

Fully Eulerian Formulation for Fluid-structure Interactions

  • Chapter
  • First Online:
Fluid-structure Interactions

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 118))

  • 2555 Accesses

Abstract

This chapter is devoted to an alternative monolithic formulation for fluid-structure interactions. While the ALE scheme was based on a mapping of the Eulerian fluid system \(\mathcal{F}(t)\) onto a fixed reference framework \(\hat{\mathcal{F}}\) to be coupled with the Lagrangian solid domain, the Fully Eulerian formulation goes the other way around. Both problems, fluid as well as solid are modeled on the moving Eulerian domains \(\mathcal{F}(t)\) and \(\mathcal{S}(t)\) connected by the moving interface \(\mathcal{I}(t)\). The general approach is comparable. Both subproblems can be variationally coupled such that we arrive at a monolithic global system. A conceptual difference is in the kind of interface treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Babuška, A.D. Miller, The post-processing approach in the finite element method. I. calculations of displacements, stresses and other higher derivatives of the displacements. Int. J. Numer. Methods Eng. 20, 1085–1109 (1984)

    Google Scholar 

  2. G.F. Carey, S.S. Chow, M.K. Seager, Approximate boundary-flux calculations. Comput. Methods Appl. Mech. Eng. 50, 107–120 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Chessa, P. Smolinski, T. Belytschko, The extended finite element method (XFEM) for solidication problems. Int. J. Numer. Methods Eng. 53, 1959–1977 (2002)

    Article  MATH  Google Scholar 

  4. G.-H. Cottet, E. Maitre, A level set method for fluid-structure interactions with immersed surfaces. Math. Models Methods Appl. Sci. 16(3), 415–438 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. G.-H. Cottet, E. Maitre, T. Milcent, Eulerian formulation and level set models for incompressible fluid-structure interaction. ESAIM: M2AN 42(3), 471–492 (2008)

    Google Scholar 

  6. M.C. Delfour, J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus and Optimization. Advances in Design and Control, 2nd edn. (SIAM, Philadelphia, 2011)

    Google Scholar 

  7. B. Desjardins, M.J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146, 59–71 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Dunne, An Eulerian approach to fluid-structure interaction and goal-oriented mesh refinement. Int. J. Numer. Math. Fluids 51, 1017–1039 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Dunne, Adaptive finite element approximation of fluid-structure interaction based on Eulerian and arbitrary Lagrangian-Eulerian variational formulations, Ph.D. thesis, University of Heidelberg, 2007. http://urn:nbn:de:bsz:16-opus-79448

    Google Scholar 

  10. E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equ. 3(3), 419–441 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Frei, Eulerian finite element methods for interface problems and fluid-structure interactions, Ph.D. thesis, Universität Heidelberg, Aug 2016. doi:10.11588/heidok.00021590

    Google Scholar 

  12. S. Frei, T. Richter, A locally modified parametric finite element method for interface problems. SIAM J. Numer. Anal. 52(5), 2315–2334 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Frei, T. Richter, An accurate Eulerian approach for fluid-structure interactions, in Fluid-Structure Interactions. Modeling, Adaptive Discretization and Solvers. Radon Series on Computational and Applied Mathematics, vol. 20 (de Gruyter, Berlin, 2017)

    Google Scholar 

  14. S. Frei, T. Richter, T. Wick, Long-term simulation of large deformation, mechano-chemical fluid-structure interactions in ALE and fully Eulerian coordinates. J. Comput. Phys. 321, 874–891 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. P. He, R. Qiao, A full-Eulerian solid level set method for simulation of fluid-structure interactions. Microfluid. Nanofluid. 11, 557–567 (2011)

    Article  Google Scholar 

  16. J.G. Heywood, R. Rannacher, S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Math. Fluids 22, 325–352 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Hillairet, Lack of collision between solid bodies in a 2d incompressible viscous flow. Commun. Partial Differ. Equ. 32, 1345–1371 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Hillairet, T. Takahashi, Collisions in 3d fluid structure interactions problems. SIAM J. Math. Anal. 40(6), 2341–2377 (2009)

    Article  Google Scholar 

  19. J. Hron, S. Turek, A monolithic FEM/Multigrid solver for an ALE formulation of fluid-structure interaction with applications in biomechanics, in Fluid-Structure Interaction: Modeling, Simulation, Optimization, ed. by H.-J. Bungartz, M. Schäfer. Lecture Notes in Computational Science and Engineering (Springer, Berlin, 2006), pp. 146–170

    Google Scholar 

  20. J. Hron, S. Turek, M. Madlik, M. Razzaq, H. Wobker, J.F. Acker, Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics, in Fluid-Structure Interaction II: Modeling, Simulation, Optimization, ed. by H.-J. Bungartz, M. Schäfer. Lecture Notes in Computational Science and Engineering (Springer, Berlin, 2010), pp. 197–220

    Google Scholar 

  21. E. Michel, On the motion of rigid bodies submerged in incompressible fluids, Ph.D. thesis, University of Heidelberg, 2008. URN:nbn:de:bsz:16-opus-85761

    Google Scholar 

  22. T. Milcent, E. Maitre, Eulerian model of immersed elastic surfaces with full membrane elasticity. Commun. Math. Sci. 14(3), 857–881 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences (Springer, New York, 2003)

    Book  MATH  Google Scholar 

  24. T. Richter, A fully Eulerian formulation for fluid-structure-interaction problems with large deformations and free structure movement, in V. European Conference on Computational Fluid Dynamics ECCOMAS CFD, Lisbon, Portugal, ed. by J.C.F. Pereira, A. Sequira (2010)

    Google Scholar 

  25. T. Richter, Goal oriented error estimation for fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 223/224, 28–42 (2012)

    Google Scholar 

  26. T. Richter, A fully Eulerian formulation for fluid-structure interactions. J. Comput. Phys. 223, 227–240 (2013)

    Article  MathSciNet  Google Scholar 

  27. T. Richter, S. Frei, Second order time-stepping for parabolic interface problems with moving interfaces. Modèl. Math. Anal. Numér. (2017). https://doi.org/10.1051/m2an/2016072

    Google Scholar 

  28. T. Richter, T. Wick, Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates. Comput. Methods Appl. Mech. Eng. 199(41–44), 2633–2642 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. J.A. Sethian, Level Set Methods and Fast Marching Methods Evolving Interfaces in Computational Geometry. Fluid mechanics, Computer Vision and Material Science. (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  30. J. Simon, Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim. 2(7–8), 649–687 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Sokołowski, J.-P. Zolésio, Introduction to Shape Optimization. Computational Mathematics, vol. 16 (Springer, Berlin, 1992)

    Google Scholar 

  32. S. Turek, J. Hron, M. Razzaq, H. Wobker, M. Schäfer. Numerical benchmarking of fluid-structure interaction: A comparison of different discretization and solution approaches, in Fluid Structure Interaction II: Modeling, Simulation and Optimization, ed. by H.J. Bungartz, M. Mehl, M. Schäfer (Springer, Berlin, 2010)

    Google Scholar 

  33. T. Wick, Fluid-structure interactions using different mesh motion techniques. Comput. Struct. 89, 1456–1467 (2011)

    Article  Google Scholar 

  34. T. Wick, Benchmark results for fluid-structure interaction problems in ALE coordinates using different mesh motion techniques, Technical report, University of Heidelberg, 2012

    Google Scholar 

  35. T. Wick, Fully Eulerian fluid-structure interaction for time-dependent problems. Comput. Methods Appl. Mech. Eng. 255(0), 14–26 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Richter, T. (2017). Fully Eulerian Formulation for Fluid-structure Interactions. In: Fluid-structure Interactions. Lecture Notes in Computational Science and Engineering, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-319-63970-3_6

Download citation

Publish with us

Policies and ethics