Skip to main content

ALE Formulation for Fluid-structure Interactions

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 118))

Abstract

The following paragraphs will be devoted to the Arbitrary Lagrangian Eulerian (ALE) method for modeling fluid-structure interactions. Based on the equations derived in Section 3.5, we describe methods for discretization in time and space. The basic techniques have already been introduced in Chapter 4, such that we can focus on the special characteristics of the Arbitrary Lagrangian Eulerian formulation for fluid-structure interaction problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W. Bangerth, M. Geiger, R. Rannacher, Adaptive Galerkin finite element methods for the wave equation. Comput. Methods Appl. Math. 10, 3–48 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Basting, A. Quaini, S. Čanić, R. Glowinski, Extended ALE Method for fluid-structure interaction problems with large structural displacements. J. Comput. Phys. 331, 312–336 (2017)

    Article  MathSciNet  Google Scholar 

  3. R. Becker, D. Meidner, B. Vexler, Efficient numerical solution of parabolic optimization problems by finite element methods. Optim. Methods Softw. 22(5), 813–833 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Belytschko, Fluid-structure interaction. Comput. Struct. 12, 459–469 (1980)

    Article  MATH  Google Scholar 

  5. M. Braack, A stabilized finite element scheme for the Navier Stokes equations on anisotropic meshes. M2AN 42(6), 903–924 (2008)

    Google Scholar 

  6. M. Braack, T. Richter, Local projection stabilization for the stokes system on anisotropic quadrilateral meshes, in Enumath, ed. by Bermudez de Castro et al. (Springer, Berlin, 2005), pp. 770–778

    Google Scholar 

  7. M.O. Bristeau, R. Glowinski, J. Periaux, Numerical methods for the Navier-Stokes equations. Comput. Phys. Rep. 6, 73–187 (1987)

    Article  Google Scholar 

  8. J. Donea, An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33, 689–723 (1982)

    Article  MATH  Google Scholar 

  9. T. Dunne, An Eulerian approach to fluid-structure interaction and goal-oriented mesh refinement. Int. J. Numer. Math. Fluids 51, 1017–1039 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Dunne, Adaptive finite element approximation of fluid-structure interaction based on Eulerian and arbitrary Lagrangian-Eulerian variational formulations, Ph.D. thesis, University of Heidelberg, 2007. http://urn:nbn:de:bsz:16-opus-79448

    Google Scholar 

  11. M. Feistauer, J. Hasnedlová-Prokopová, J. Horáček, A. Kosík, V. Kučera, DGFEM for dynamical systems describing interaction of compressible fluid and structures. J. Comput. Appl. Math. 254, 17–30 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. M.A. Fernández, Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit. SeMA J. 55(1), 59–108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. M.A. Fernández, J.-F. Gerbeau, Algorithms for fluid-structure interaction problems, in Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System. MS & A, vol. 1, ed. by L. Formaggia, A. Quarteroni, A. Veneziani (Springer, Berlin, 2009), pp. 307–346

    Google Scholar 

  14. M.A. Fernández, M. Moubachir, A Newton method using exact Jacobians for solving fluid-structure coupling. Comput. Struct. 83, 127–142 (2005)

    Article  Google Scholar 

  15. L. Formaggia, F. Nobile, A stability analysis for the Arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math 7, 105–132 (1999)

    MathSciNet  MATH  Google Scholar 

  16. L. Formaggia, F. Nobile, Stability analysis of second-order time accurate schemes for ALE-FEM. Comput. Methods Appl. Mech. Eng. 193(39–41), 4097–4116 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Formaggia, A. Quarteroni, A. Veneziani, Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System (Springer, Milan, 2009)

    Book  MATH  Google Scholar 

  18. T. Grätsch, K.J. Bathe, Goal-oriented error estimation in the analysis of fluid flows with structural interactions. Comput. Methods Appl. Mech. Eng. 195, 5673–5684 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Griewank, On automatic differentiation, in Mathematical Programming: Recent Developments and Applications, ed. by M. Iri, K. Tanabe (Kluwer Academic Publishers, Boston, 1989), pp. 83–108

    Google Scholar 

  20. M. Heil, A.L. Hazel, J. Boyle, Solvers for large-displacement fluid-structure interaction problems: Segregated vs. monolithic approaches. Comput. Mech. 43, 91–101 (2008)

    Google Scholar 

  21. B.T. Helenbrook, Mesh deformation using the biharmonic operator. Int. J. Numer. Methods Eng. 56(7), 1–30 (2001)

    Google Scholar 

  22. J. Heywood, R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. iii. smoothing property and higher order error estimates for spatial discretization. SIAM J. Numer. Anal. 25(3), 489–512 (1988)

    Google Scholar 

  23. J. Heywood, R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. iv. error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(3), 353–384 (1990)

    Google Scholar 

  24. J. Hron, S. Turek, A monolithic FEM solver for an ALE formulation of fluid-structure interaction with configuration for numerical benchmarking, in European Conference on Computational Fluid Dynamics ECCOMAS CDF 2006, ed. by P. Wesseling, E. Onate, J. Périaux (TU Delft, 2006), pp. 1–21

    Google Scholar 

  25. J. Hron, S. Turek, A monolithic FEM/Multigrid solver for an ALE formulation of fluid-structure interaction with applications in biomechanics, in Fluid-Structure Interaction: Modeling, Simulation, Optimization, ed. by H.-J. Bungartz, M. Schäfer. Lecture Notes in Computational Science and Engineering (Springer, Berlin, 2006), pp. 146–170

    Google Scholar 

  26. J. Hron, S. Turek, Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, in Fluid-Structure Interaction: Modeling, Simulation, Optimization, ed. by H.-J. Bungartz, M. Schäfer. Lecture Notes in Computational Science and Engineering (Springer, Berlin, 2006), pp. 371–385

    Google Scholar 

  27. J. Hron, S. Turek, M. Madlik, M. Razzaq, H. Wobker, J.F. Acker, Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics, in Fluid-Structure Interaction II: Modeling, Simulation, Optimization, ed. by H.-J. Bungartz, M. Schäfer. Lecture Notes in Computational Science and Engineering (Springer, Berlin, 2010), pp. 197–220

    Google Scholar 

  28. P. Le Tallec, J. Mouro, Fluid structure interaction with large structural displacement. Comput. Methods Appl. Mech. Eng. 190, 3039–3067 (2001)

    Article  MATH  Google Scholar 

  29. M. Luskin, R. Rannacher, On the smoothing property of the Crank-Nicholson scheme. Appl. Anal. 14, 117–135 (1982)

    Article  MATH  Google Scholar 

  30. D. Meidner, T. Richter, Goal-oriented error estimation for the fractional step theta scheme. Comput. Methods Appl. Math. 14, 203–230 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Meidner, T. Richter, A posteriori error estimation for the fractional step theta discretization of the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 288, 45–59 (2015)

    Article  MathSciNet  Google Scholar 

  32. M. Molnar, Stabilisierte Finite Elemente für Strömungsprobleme auf bewegten Gebieten, Master’s thesis, Universität Heidelberg, 2015

    Google Scholar 

  33. Y. Navrose, S. Sen, S. Mittal, Free vibrations of an elliptic cylinder at low Reynolds numbers. J. Fluids Struct. 51, 55–67 (2014)

    Article  Google Scholar 

  34. T.K. Prasanth, S. Mittal, Vortex-induced vibration of two circular cylinders at low Reynolds number. J. Fluids Struct. 25, 731–741 (2009)

    Article  Google Scholar 

  35. A. Prohl, Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations. Advances in Numerical Mathematics (Springer, Berlin, 1997)

    Google Scholar 

  36. L.B. Rall, Automatic Differentiation - Techniques and Applications. Lecture Notes in Computer Science, vol. 20 (Springer, Berlin, 1981)

    Google Scholar 

  37. R. Rannacher, Finite element solution of diffusion problems with irregular data. Numer. Math. 43, 309–327 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. T. Richter, Parallel multigrid for adaptive finite elements and its application to 3D flow problem, Ph.D. thesis, Universität Heidelberg, 2005. URN:nbn:de:bsz:16-opus-57433

    Google Scholar 

  39. T. Richter, A fully Eulerian formulation for fluid-structure-interaction problems with large deformations and free structure movement, in V. European Conference on Computational Fluid Dynamics ECCOMAS CFD, Lisbon, Portugal, ed. by J.C.F. Pereira, A. Sequira (2010)

    Google Scholar 

  40. T. Richter, Goal oriented error estimation for fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 223/224, 28–42 (2012)

    Google Scholar 

  41. T. Richter, A fully Eulerian formulation for fluid-structure interactions. J. Comput. Phys. 223, 227–240 (2013)

    Article  MathSciNet  Google Scholar 

  42. T. Richter, T. Wick, Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates. Comput. Methods Appl. Mech. Eng. 199(41–44), 2633–2642 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. T. Richter, T. Wick, On time discretizations of fluid-structure interactions, in Multiple Shooting and Time Domain Decomposition Methods, ed. by T. Carraro, M. Geiger, S. Körkel, R. Rannacher. Contributions in Mathematical and Computational Science, vol. 9 (Springer, Cham, 2015), pp. 377–400

    Google Scholar 

  44. M. Rumpf, A variational approach to optimal meshes. Numer. Math. 72, 523–540 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  45. P. Sackinger, P. Schunk, R. Rao, A Newton-Raphson pseudo-solid domain mapping technique for free and moving boundary problems: a finite element implementation. J. Comput. Phys. 125(1), 83–103 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Schäfer, S. Turek, Benchmark computations of laminar flow around a cylinder. (With support by F. Durst, E. Krause and R. Rannacher), in Flow Simulation with High-Performance Computers II. DFG Priority Research Program Results 1993–1995, ed. by E.H. Hirschel. Notes on Numerical Fluid Mechanics, vol. 52 (Vieweg, Wiesbaden, 1996), pp. 547–566

    Google Scholar 

  47. M. Schäfer, D.C. Sternel, G. Becker, P. Pironkov, Efficient numerical simulation and optimization of fluid-structure interaction, in Fluid-Structure Interaction II: Modeling, Simulation, Optimization, ed. by H.-J. Bungartz, M. Schäfer. Lecture Notes in Computational Science and Engineering (Springer, Berlin, 2010), pp. 131–158

    Google Scholar 

  48. J. Sokołowski, J.-P. Zolésio, Introduction to Shape Optimization. Computational Mathematics, vol. 16 (Springer, Berlin, 1992)

    Google Scholar 

  49. K. Stein, T.E. Tezduyar, R. Benney, Mesh moving techniques for fluid-structure interactions with large displacements. J. Appl. Math. 70, 58–63 (2003)

    MATH  Google Scholar 

  50. S. Turek, L. Rivkind, J. Hron, R. Glowinski, Numerical study of a modified time-stepping theta-scheme for incompressible flow simulations. J. Sci. Comput. 28(2–3), 533–547 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. W.A. Wall, Fluid-structure interaction with stabilized finite elements, Ph.D. thesis, University of Stuttgart, 1999. URN:nbn:de:bsz:93-opus-6234

    Google Scholar 

  52. T. Wick, Fluid-structure interactions using different mesh motion techniques. Comput. Struct. 89, 1456–1467 (2011)

    Article  Google Scholar 

  53. T. Wick, Adaptive finite element simulation of fluid-structure interaction with application to heart-valve dynamics. Ph.D. thesis, Universität Heidelberg, 2012. URN:nbn:de:bsz:16-opus-129926

    Google Scholar 

  54. T. Wick, Solving monolithic fluid-structure interaction problems in arbitrary Lagrangian Eulerian coordinates with the deal.ii library. Arch. Numer. Softw. 1, 1–19 (2013)

    Google Scholar 

  55. T. Wick, Stability estimates and numerical comparison of second order time-stepping schemes for fluid-structure interactions, in Numerical Mathematics and Advanced Applications 2011:, Proceedings of ENUMATH 2011, Leicester, Sept 2011, A. Cangiani, R.L. Davidchack, E. Georgoulis, A.N. Gorban, J. Levesley, M.V. Tretyakov (2013), pp. 625–632

    Google Scholar 

  56. S. Yirgit, M. Schäfer, M. Heck, Grid movement techniques and their influence on laminar fluid-structure interaction problems. J. Fluids Struct. 24(6), 819–832 (2008)

    Article  Google Scholar 

  57. K.G. van der Zee, E.H. van Brummelen, R. de Borst, Goal-oriented error estimation and adaptivity for free-boundary problems: the domain-map linearization approach. SIAM J. Sci. Comput. 32(2), 1074–1092 (2010)

    MathSciNet  MATH  Google Scholar 

  58. K.G. van der Zee, E.H. van Brummelen, R. de Borst, Goal-oriented error estimation and adaptivity for free-boundary problems: the shape-linearization approach. SIAM J. Sci. Comput. 32(2), 1093–1118 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. J.-P. Zolesio, M.C. Delfour, Shapes and Geometries: Analysis, Differential Calculus and Optimization (SIAM, Philadelphia, 2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Richter, T. (2017). ALE Formulation for Fluid-structure Interactions. In: Fluid-structure Interactions. Lecture Notes in Computational Science and Engineering, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-319-63970-3_5

Download citation

Publish with us

Policies and ethics