Skip to main content

Coupled Fluid-structure Interactions

  • Chapter
  • First Online:
Fluid-structure Interactions

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 118))

Abstract

In Fig. 3.1 we show a typical configuration of fluid-structure interactions. At time t = 0 the domain \(\varOmega \subset \mathbb{R}^{2}\) is split into a fluid-part \(\hat{\mathcal{F}}\) and a solid-part \(\hat{\mathcal{S}}\). This configuration is called the reference configuration and we assume that the system is at rest, i.e. v f = 0, p f = 0 and u s = 0. The situation in Fig. 3.1 shows a case, where an elastic obstacle is attached to the bottom of a flow container at Γ s D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Avalos, R. Triggiani, The coupled PDE system arising in fluid/structure interaction. i. explicit semigroup generator and its spectral properties, in Fluids and Waves. Contemporary Mathematics, vol. 440 (American Mathematical Society, Providence, RI, 2007), pp. 15–54

    Google Scholar 

  2. G. Avalos, R. Triggiani, Fluid-structure interaction with and without internal dissipation of the structure: a contrast study in stability. Evol. Equ. Control Theory 2, 563–598 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Avalos, I. Lasiecka, R. Triggiani, Higher regularity of a coupled parabolic hyperbolic fluid-structure interactive system. Georgian Math. J. 15, 402–437 (2008)

    MathSciNet  MATH  Google Scholar 

  4. H. Blum, R. Rannacher, On the boundary value problem for the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2, 556–581 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Braack, T. Richter, Stabilized finite elements for 3-d reactive flows. Int. J. Numer. Math. Fluids 51, 981–999 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. H.-J. Bungartz, M. Schäfer (eds.), Fluid-Structure Interaction II. Modelling, Simulation, Optimisation. Lecture Notes in Computational Science and Engineering (Springer, Berlin, 2010)

    Google Scholar 

  7. P. Causin, J.F. Gereau, F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Eng. 194, 4506–4527 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. G.-H. Cottet, E. Maitre, T. Milcent, An Eulerian method for fluid-structure coupling with biophysical applications, in Proceedings of the European Conference on Computational Fluid Dynamics, Delft University of Technology, Sept 5–8, 2006

    Google Scholar 

  9. G.-H. Cottet, E. Maitre, T. Milcent, Eulerian formulation and level set models for incompressible fluid-structure interaction. ESAIM: M2AN 42(3), 471–492 (2008)

    Google Scholar 

  10. D. Coutand, S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid. Arch. Ration. Mech. Anal. 176, 25–102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Coutand, S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations. Arch. Ration. Mech. Anal. 179, 303–352 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Q. Du, M. Gunzburger, L. Hou, J. Lee, Analysis of a linear fluid-structure interaction problem. Discrete Contin. Dyn. Syst. Ser. A 9(3), 633–650 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Q. Du, M. Gunzburger, L. Hou, J. Lee, Semidiscrete finite element approximations of a linear fluid-structure interaction problem. SIAM J. Numer. Anal. 42, 1–29 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Dunne, An Eulerian approach to fluid-structure interaction and goal-oriented mesh refinement. Int. J. Numer. Math. Fluids 51, 1017–1039 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Failer, Optimal control for time dependent nonlinear fluid-structure interaction, Ph.D. thesis, Technische Universität München, 2017

    Google Scholar 

  16. S. Frei, Eulerian finite element methods for interface problems and fluid-structure interactions, Ph.D. thesis, Universität Heidelberg, Aug 2016. doi:10.11588/heidok.00021590

    Google Scholar 

  17. C. Grandmont, Existence for the three-dimensional steady state fluid-structure interaction problem. J. Math. Fluid Mech. 4, 1–94 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Grandmont, M. Hillairet, Existence of global strong solutions to a beam-fluid interaction system. Arch. Ration. Mech. Anal. 220, 1283–1333 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. P. He, R. Qiao, A full-Eulerian solid level set method for simulation of fluid-structure interactions. Microfluid. Nanofluid. 11, 557–567 (2011)

    Article  Google Scholar 

  20. M. Ignatova, I. Kukavica, I. Lasiecka, A. Tuffaha, On well-posedness for a free boundary fluid-structure model. J. Math. Phys. 53(115624), 2012. doi:10.1063/1.4766724

    Google Scholar 

  21. I. Kukavica, A. Tuffaha, Solutions to a fluid-structure interaction free boundary problem. Discrete Contin. Dyn. Syst. 32, 1355–1389 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Legay, J. Chessa, T. Belytschko, An Eulerian-Lagrangian method for fluid-structure interaction based on level sets. Comput. Methods Appl. Mech. Eng. 195, 2070–2087 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Mitrea, S. Monniaux, Maximal regularity for the Lamé system in certain classes of non-smooth domains. J. Evol. Equ. 10(4), 811–833 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences (Springer, New York, 2003)

    Book  MATH  Google Scholar 

  25. A. Rössle, Corner singularities and regularity of weak solutions for the two-dimensional Lamé equations on domains with angular corners. J. Elast. 60, 57–75 (2000)

    Article  MATH  Google Scholar 

  26. B. Schweizer, Partielle Differentialgleichungen. Eine anwendungsorientierte Einführung (Springer, Berlin, 2013)

    Google Scholar 

  27. J.A. Sethian, Level Set Methods and Fast Marching Methods Evolving Interfaces in Computational Geometry. Fluid mechanics, Computer Vision and Material Science. (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  28. K. Stein, T.E. Tezduyar, R. Benney, Mesh moving techniques for fluid-structure interactions with large displacements. J. Appl. Math. 70, 58–63 (2003)

    MATH  Google Scholar 

  29. J. Wloka, Partielle Differentialgleichungen (Teubner, Stuttgart, 1982)

    Book  MATH  Google Scholar 

  30. Y. Yang, W. Jäger, M. Neuss-Radu, T. Richter, Mathematical modeling and simulation of the evolution of plaques in blood vessels. J. Math. Biol. 72(4), 973–996 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Richter, T. (2017). Coupled Fluid-structure Interactions. In: Fluid-structure Interactions. Lecture Notes in Computational Science and Engineering, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-319-63970-3_3

Download citation

Publish with us

Policies and ethics