Skip to main content

Models

  • Chapter
  • First Online:
Fluid-structure Interactions

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 118))

  • 2577 Accesses

Abstract

In this chapter, we derive the equations that describe the dynamics of fluids and solids. Matter is composed of molecules, atoms and smaller particles that all interact with each other. A description of the dynamics of these micro-structure is possible by fundamental physical laws. Such a particle centered view-point is however not feasible, if large physical objects are considered that consist of many atoms. To describe every particle in one liter of water, more than 1025 molecules must be considered. A description of every single molecule–or even every atom or subatomic particle–in a large scale hydrodynamical problem like the flow of water around a ship is completely out of bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Braack, P.B. Mucha, Directional do-nothing condition for the Navier-Stokes equations. J. Comput. Math. 32(5), 507–521 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Carlson, A. Jaffe, A. Wiles (eds.), Millennium Prize Problems (CMI/American Mathematical Society, Cambridge, 2006). ISBN-13: 978-0-8218-3679-8

    Google Scholar 

  3. P.G. Ciarlet, Mathematical Elasticity. Three-Dimensional Elasticity, vol. I (North-Holland, Amsterdam, 1991)

    Google Scholar 

  4. P.G. Ciarlet, On Korn’s Inequality. Chin. Ann. Math. 31, 607–618 (2010)

    Article  Google Scholar 

  5. D. Coutand, S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid. Arch. Ration. Mech. Anal. 176, 25–102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. G. de Rham, Variétés Différentiables (Hermann, Paris, 1960)

    MATH  Google Scholar 

  7. L. Failer, Optimal control for time dependent nonlinear fluid-structure interaction, Ph.D. thesis, Technische Universität München, 2017

    Google Scholar 

  8. R.L. Fosdick, E.G. Virga, A variational proof of the stress theorem of Cauchy. Arch. Ration. Mech. Anal. 105(2), 95–103 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I, Steady-State Problems (Springer, New York, 2011)

    Google Scholar 

  10. F. Gazzola, M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations. Ann. I.H. Poincaré 23, 185–207 (2006)

    Google Scholar 

  11. V. Girault, P.-A. Raviart, Finite Elements for the Navier Stokes Equations (Springer, Berlin, 1986)

    Book  MATH  Google Scholar 

  12. J.G. Heywood, R. Rannacher, S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Math. Fluids 22, 325–352 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. G.A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering (Wiley-Blackwell, Chichester, 2000)

    MATH  Google Scholar 

  14. C.O. Horgan, Korn’s inequalities and their applications in continuum mechanics. SIAM Rev. 37, 491–511 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. G.W. Jones, S.J. Chapman, Modeling growth in biological materials. SIAM Rev. 54(1), 52–118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Mitrea, S. Monniaux, Maximal regularity for the Lamé system in certain classes of non-smooth domains. J. Evol. Equ. 10(4), 811–833 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Molnar, Stabilisierte Finite Elemente für Strömungsprobleme auf bewegten Gebieten, Master’s thesis, Universität Heidelberg, 2015

    Google Scholar 

  18. J. Nec̆as, Equations aux Derivees Partielles (Presses de Université de Montréal, Montréal, 1965)

    Google Scholar 

  19. R. Rannacher, Numerik Partieller Differentialgleichungen. Universität Heidelberg, 2008, http://numerik.iwr.uni-heidelberg.de/~lehre/notes/. Vorlesungsskriptum

  20. R.S. Rivlin, J.L. Ericksen, Stress-deformation relations for isotropic materials. J. Ration. Mech. Anal., 4, 323–425 (1955). Reprinted in Rational Mechanics of Materials. International Science Review Series, (Gordon & Breach, New York, 1965)

    Google Scholar 

  21. W. Rudin, Functional Analysis. International Series in Pure and Applied Mathematics (McGraw-Hill, New York, 1991)

    Google Scholar 

  22. P. Shi, S. Wright, W 2,p-regularity of the displacement problem for the lamé system on W 2,s domains. J. Math. Anal. Appl. 239(2), 291–305 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Sohr, The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts (Birkhäuser, Basel, 2001)

    Google Scholar 

  24. R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis (American Mathematical Society, Providence, 2000)

    MATH  Google Scholar 

  25. C. Truesdell, W. Noll, The Non-Linear Field Theories of Mechanics (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  26. M. von Laer, Finite element simulation of non-newtonian flows, Master’s thesis, Universität Heidelberg, 2013

    Google Scholar 

  27. J. Wloka, Partielle Differentialgleichungen (Teubner, Stuttgart, 1982)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Richter, T. (2017). Models. In: Fluid-structure Interactions. Lecture Notes in Computational Science and Engineering, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-319-63970-3_2

Download citation

Publish with us

Policies and ethics