Skip to main content

Terahertz Communications for 5G and Beyond

  • Chapter
  • First Online:
Antenna Fundamentals for Legacy Mobile Applications and Beyond

Abstract

A brief discussion about the exclusive properties and applications of terahertz technology is provided in this chapter. The frequency spectrum terahertz (THz) is also discussed. The applications of terahertz in the field of sensors and terahertz for communications are covered. State-of-the-art literature starting from the early to the latest research conducted is provided and analyzed in terms of the performance of terahertz systems. Terahertz, known as Tera waves or T-waves rather than submillimeter wave, has approximately a fraction of a wavelength less than 30 μm. T-wave is heavily used in sensing and imaging applications, and has no ionization hazards and is an excellent candidate frequency band to defeat the multipaths interference problems for pulse communications. The lower quantum energy of T-waves identifies its potential applications toward near-field imaging, telecommunications, spectroscopy, and sensing, including medical diagnoses and security screening. Identification of DNA signatures including complex real-time molecular dynamics through dielectric resonance is a good example of terahertz spectroscopy instruments nowadays. This concluding chapter will not only address the practical applications of terahertz communications, but also identify the research challenges that lie ahead in terms of terahertz antenna design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Withayachumnankul, D. Abbott, Metamaterials in the terahertz regime. IEEE Photonics J. 1(2), 99–118 (2009)

    Article  Google Scholar 

  2. N. Pala, A.N. Abbas, Terahertz technology for nano applications. Enc. Nanotechnol. 1, 2653–2667 (2012)

    Google Scholar 

  3. S. Ergün, S. Sönmez, Terahertz technology for military applications. J. Mil. Inf. Sci. 3(1), 13–16 (2015)

    Article  Google Scholar 

  4. M. Planck (ed.), The Theory of Heat Radiation, 2nd edn. (P. Blakiston’s Sons & Co., Philadelphia, 1914), pp. 180–181

    Google Scholar 

  5. D. Woolard, R. Kaul, R. Suenram, A.H. Walker, T.Globus, A. Samuels, Terahertz electronics for chemical and biological warfare agent detection. in IEEE MTT-S International Microwave Symposium Digest (Anaheim, 1999), pp. 925–928

    Google Scholar 

  6. K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11(20), 2549–2554 (2003)

    Article  Google Scholar 

  7. M. Yamashita, K. Kawase, C. Otani, T. Kiwa, M. Tonouchi, Imaging of large-scale integrated circuits using laser terahertz emission microscopy. Opt. Express 13(1), 115–120 (2005)

    Article  Google Scholar 

  8. C. Debus, P.H. Bolivar, Frequency selective surfaces for high sensitivity terahertz sensing. Appl. Phys. Lett. 91(18), 184102 (2007)

    Article  Google Scholar 

  9. L. Cong, R. Singh, Sensing with THz metamaterial absorbers. arXiv Preprint- arXiv 1408, 3711 (2014)

    Google Scholar 

  10. S.J. Park, J.T. Hong, S.J. Choi, H.S. Kim, W.K. Park, S.T. Han, J.Y. Park, S. Lee, D.S. Kim, Y.H. Ahn, Detection of microorganisms using terahertz metamaterials. Sci. Rep. 4, 4988 (2014)

    Article  Google Scholar 

  11. C. Sabah, Tunable metamaterial design composed of triangular split ring resonator and wire strip for S-and C-microwave bands. Prog. Electromagn. Res. B 22, 341–357 (2010)

    Article  Google Scholar 

  12. H. Torun, F.C. Top, G. Dundar, A.D. Yalcinkaya, An antenna coupled split-ring resonator for biosensing. J. Appl. Phys. 116(12), 124701.1–124701.6 (2014)

    Article  Google Scholar 

  13. W. Guo, L. He, H. Sun, H. Zhao, B. Li, X.W. Sun, A dual-band terahertz metamaterial based on a Hybrid'H'-shaped cell. Prog. Electromagn. Res. M 30, 39–50 (2013)

    Article  Google Scholar 

  14. Z. Jakšić, S. Vuković, J. Matovic, D. Tanasković, Negative refractive index metasurfaces for enhanced biosensing. Dent. Mater. 4(1), 1–36 (2010)

    Google Scholar 

  15. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76(25), 4773 (1996)

    Article  Google Scholar 

  16. T. Driscoll, G.O. Andreev, D.N. Basov, S. Palit, S.Y. Cho, N.M. Jokerst, D.R. Smith, Tuned permeability in terahertz split-ring resonators for devices and sensors. Appl. Phys. Lett. 91(6), 062511 (2007)

    Article  Google Scholar 

  17. Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, L. Wang, Modulated terahertz responses of split ring resonators by nanometer thick liquid layers. Appl. Phys. Lett. 92(22), 221101 (2008)

    Article  Google Scholar 

  18. C.M. Bingham, H. Tao, X. Liu, R.D. Averitt, X. Zhang, W.J. Padilla, Planar wallpaper group metamaterials for novel terahertz applications. Opt. Express 16(23), 18565–18575 (2008)

    Article  Google Scholar 

  19. A. Elhawil, J. Stiens, C. De Tandt, W. Ranson, R. Vounckx, Thin-film sensing using circular split-ring resonators at mm-wave frequencies. Appl. Phys. A 103(3), 623–626 (2011)

    Article  Google Scholar 

  20. H. Tao, A.C. Strikwerda, M. Liu, J.P. Mondia, E. Ekmekci, K. Fan, D.L. Kaplan, W.J. Padilla, X. Zhang, R.D. Averitt, F.G. Omenetto, Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications. Appl. Phys. Lett 97(26), 261909 (2010)

    Article  Google Scholar 

  21. W. Withayachumnankul, H. Lin, K. Serita, C.M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, D. Abbott, Sub-diffraction thin-film sensing with planar terahertz metamaterials. Opt. Express 20(3), 3345–3352 (2012)

    Article  Google Scholar 

  22. S. Galoda, G. Singh, Terahertz technology ─ an emerging electromagnetic spectrum, in Proceedings of International Conference on Information and Communication Technology (IICT-2007) (DIT Dehradoon, India, 26–28 July 2007), pp. 482–486

    Google Scholar 

  23. S. Galoda, G. Singh, Fighting terrorism with terahertz. IEEE Potential Mag. 26(6), 24–29 (2007)

    Article  Google Scholar 

  24. J. Grade, P. Haydon, D.V. Weide, Electronic terahertz antennas and probes for spectroscopic detection and diagnostics. Proc. IEEE 95(8), 1583–1591 (2007)

    Article  Google Scholar 

  25. P. Kumar, A.K. Singh, G. Singh, T. Chakravarty, S. Bhooshan, Terahertz technology – a new direction, in IEEE International Symposium on Microwave, Bangalore, India (2006), pp. 195–201

    Google Scholar 

  26. S. P. Mickan, X.-C. Zhang, in Terahertz Sensing Technology, ed. by D. L. Woolard, W. R. Loerop, M. S. Shur (Eds), (World Scientific, Singapore, 2003)

    Google Scholar 

  27. D.R. Vizard, Millimeter-wave applications: from satellite communications to security systems. Microw. J. 49(7), 22–36 (2006)

    Google Scholar 

  28. E.R. Brown, K.A. McIntosh, K.B. Nichols, C.L. Dennis, Photo mixing upto 3.8 THz in low temperature grown GaAs. Appl. Phys. Lett. 66, 285–287 (1995)

    Article  Google Scholar 

  29. S. Verghese, K.A. McIntosh, E.R. Brown, Optical and terahertz power limits in the low temperature GaAs photomixer. Appl. Phys. Lett. 71, 2743–2745 (1997)

    Article  Google Scholar 

  30. R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissnev, H.L. Hastnagel, Spectral characterization of broadband THz antennas by photoconductive mixing; towards optimal antenna design. IEEE Antenna Wirel. Propag. Lett. 4, 85–88 (2005)

    Article  Google Scholar 

  31. I.G. Gregory, W.R. Tribe, B.E. Cole, M.J. Evans, E.H. Linfield, A.G. Davies, M. Missons, Resonant dipole antennas for continuous wave terahertz photomixers. Appl. Phys. Lett. 85, 1622–1624 (2004)

    Article  Google Scholar 

  32. M. Matsuura, M. Tani, K. Sakai, Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas. Appl. Phys. Lett. 70, 559–561 (1997)

    Article  Google Scholar 

  33. F.K. Schwering, Millimeter wave antenna. Proc. IEEE 80(1), 92–102 (1992)

    Article  Google Scholar 

  34. T. Seki, N. Honma, K. Nishikawa, K. Tsunekawa, Millimeter-wave high-efficiency multilayer parasitic microstrip antenna array on Teflon substrate. IEEE Trans. Microwave Theory Tech. 53(6), 2101–2106 (2005)

    Article  Google Scholar 

  35. D.M. Pozar, Microstrip antennas. Proc. IEEE 80(1), 79–91 (1992)

    Article  Google Scholar 

  36. A.A. Abdelaziz, Bandwidth enhancement of microstrip antenna. Prog. Electromagn. Res. 63, 311–317 (2006)

    Article  Google Scholar 

  37. R. Garg, V.S. Reddy, Edge feeding of microstrip ring antennas. IEEE Trans. Antennas Propag. 51(8), 1941–1946 (2003)

    Article  Google Scholar 

  38. M. Saed, R. Yadla, Microstrip-fed low profile and compact dielectric resonator antenna. Prog. Electromagn. Res 56, 151–162 (2006)

    Article  Google Scholar 

  39. A. Sharma, G. Singh, Rectangular microstirp patch antenna design at THz frequency for short distance wireless communication systems. J. Infrared Millim. Terahertz Waves 30, 1–7 (2009)

    Article  Google Scholar 

  40. A. Sharma, V.K. Dwivedi, G. Singh, THz rectangular patch microstrip antenna design using photonic crystal as substrate, in Proceedings of Progress in Electromagnetic Research Symposium (PIERS 2008), (Cambridge, USA, 2–6 July 2008), pp. 161–165

    Google Scholar 

  41. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, T. Kurner, Short-range ultra-broadband terahertz communications: concept and perspectives. IEEE Antennas Propag. Mag. 49(6), 24–38 (2007)

    Article  Google Scholar 

  42. A. Sharma, G. Singh, Design of single pin shorted three dielectric layered substrates rectangular patch microstrip antenna for communication systems. Prog. Electromag. Res. Lett. 2, 157–165 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadeem Naeem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Naeem, N., Parveen, S., Ismail, A. (2018). Terahertz Communications for 5G and Beyond. In: Elfergani, I., Hussaini, A., Rodriguez, J., Abd-Alhameed, R. (eds) Antenna Fundamentals for Legacy Mobile Applications and Beyond. Springer, Cham. https://doi.org/10.1007/978-3-319-63967-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63967-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63966-6

  • Online ISBN: 978-3-319-63967-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics