Skip to main content

Neurological Outcome and Efficacy of AVM Treatment

  • Chapter
  • First Online:
Brain Arteriovenous Malformations

Abstract

The goal of any treatment for AVM is to aim for complete occlusion. This must be confirmed by catheter angiography. Incompletely occluded AVM still poses a risk of haemorrhage. In this chapter we have performed a literature search in PubMed database using keywords “brain avm” up to end of 2016. All series, where the method of treatment was clearly defined, the series of patients was larger than 30 and the major morbidity and mortality was clearly stated were included. In the literature review, we identified 32 surgical studies, analysing altogether 4296 patients with a mean age of 39 years. Mean efficacy within published microsurgical series was 96.9% (95% CI 95.7–97.9%) and the complication rate ranged from 1.2% to 21% with mean of 7.1% (95% CI 5.6–8.8%). Mean efficacy within 33 endovascular series comprising of 4787 patients with mean age of 35 years was 21.9% (95% CI 16.0–28.5%) and the mean complication rate was 7.4% (95% CI 6.3–8.5%). Literature review on LGK treatment was based on 45 studies comprising of 9489 patients with mean age of 31 years. The mean efficacy within studied series was 64.2% (95% CI 59.4–68.9%) and the mean morbidity and mortality was 6.7% (95% CI 5.5–8.0%).

Our cohort is made up of 294 patients (171 men, 123 women) treated at the Department of Neurosurgery, Charles University and Central Military Hospital, Prague. The patients received treatment between 1st January 1995 and 31st December 2016. The database was developed prospectively, the patients’ data were assessed retrospectively. The patient’s age span was between 9 and 87 years of life, mean age was 41.8 years.

The surgical group consisted of 131 patients, 32 of whom had undergone preoperative embolization of their AVM. Endovascular treatment alone was used for 59 patients, 55 patients were referred to the centre of radiosurgery, 41 directly and 14 after previous partial treatment (13 via endovascular means, 1 surgically), the remaining 49 were advised to undergo a policy of “watch and wait”.

Fourteen out of the 131 surgical patients were admitted in a serious condition marked by severe neurological deficit or a GCS of <9. Three patients in this group were admitted after bleeding from previously irradiated AVM. Preoperative embolization was used in 32 cases. A serious complication after surgery occurred in four patients; two of which (S-M grade III and IV) died. Surgical morbidity and mortality was thus 3.8%. Four AVMs (3.8%) had not been removed completely, which gives efficacy of surgery 96.2%.

In the endovascular group, 59 patients had total of 102 endovascular procedures. One patient was admitted after bleeding from previously irradiated AVM. As an embolization agent was used Onyx in 34 cases and NBCA in 25. In addition, coils were used in nine cases, mainly for treatment of flow-related aneurysms. There were four cases of unmanageable haemorrhage during embolization; in another case embolization caused severe neurological deficit due to inadverent occlusion of major cerebral artery. All these patients died. Consequently, the endovascular group morbidity and mortality amounts to 8.5% (patient-related) and 4.9% (procedure-related). Complete occlusion was achieved in 22 AVMs, which is success rate of 37.3% per patient and 21.6% per procedure.

Fifty-five patients were shared with the LGK unit; 41 patients were referred there for treatment primarily and 13 patients were referred to the LGK unit after previous partial embolization of AVM and one after surgery.

The observation group consists of 49 patients. Eight of them underwent active treatment for some other neurosurgical pathology. In one case AVM thrombosed spontaneously after minor bleeding. We encountered two bleedings with subsequent deaths in group of patients under observation.

On the acceptance of 1.1% annual bleeding rate as was found in ARUBA study and acceptance of 30% probability of poor recovery after AVM-related bleeding, comparisons of a 40-year outlook of bleeding and poor outcome in patients treated with the particular techniques is given. These comparisons is favouring microsurgery as a method of choice when AVM could be safely resected. Further analysis of endovascular treatment shows that only after 10–15 years post-embolization is the patient’s prognosis more favourable than the natural course of the disease with regard to potential risk of bleeding. Analysis of prognosis of poor outcome after embolization shows that significant effect of curative embolization disappear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laakso A, et al. Long-term excess mortality in 623 patients with brain arteriovenous malformations. Neurosurgery. 2008;63(2):244–53. discussion 253–5

    Article  PubMed  Google Scholar 

  2. Abad JM, et al. Cerebral arteriovenous malformations. Comparative results of surgical vs conservative treatment in 112 cases. J Neurosurg Sci. 1983;27(3):203–10.

    CAS  PubMed  Google Scholar 

  3. Jomin M, Lesoin F, Lozes G. Prognosis for arteriovenous malformations of the brain in adults based on 150 cases. Surg Neurol. 1985;23(4):362–6.

    Article  CAS  PubMed  Google Scholar 

  4. Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg. 1986;65(4):476–83.

    Article  CAS  PubMed  Google Scholar 

  5. Andrews BT, Wilson CB. Staged treatment of arteriovenous malformations of the brain. Neurosurgery. 1987;21(3):314–23.

    Article  CAS  PubMed  Google Scholar 

  6. Heros RC, Korosue K, Diebold PM. Surgical excision of cerebral arteriovenous malformations: late results. Neurosurgery. 1990;26(4):570–7. discussion 577–8

    Article  CAS  PubMed  Google Scholar 

  7. Deruty R, et al. The combined management of cerebral arteriovenous malformations. Experience with 100 cases and review of the literature. Acta Neurochir. 1993;123(3-4):101–12.

    Article  CAS  PubMed  Google Scholar 

  8. Sisti MB, Kader A, Stein BM. Microsurgery for 67 intracranial arteriovenous malformations less than 3 cm in diameter. J Neurosurg. 1993;79:653–60.

    Article  CAS  PubMed  Google Scholar 

  9. Hamilton MG, Spetzler RF. The prospective application of a grading system for arteriovenous malformations. Neurosurgery. 1994;34:2–7.

    CAS  PubMed  Google Scholar 

  10. O’Laoire SA. Microsurgical treatment of arteriovenous malformations in critical areas of the brain. Br J Neurosurg. 1995;9(3):347–60.

    Article  PubMed  Google Scholar 

  11. Tew JM Jr, Lewis AI, Reichert KW. Management strategies and surgical techniques for deep-seated supratentorial arteriovenous malformations. Neurosurgery. 1995;36(6):1065–72.

    Article  PubMed  Google Scholar 

  12. Malik GM, Seyfried DM, Morgan JK. Temporal lobe arteriovenous malformations: surgical management and outcome. Surg Neurol. 1996;46(2):106–14. discussion 114–5

    Article  CAS  PubMed  Google Scholar 

  13. Schaller C, Schramm J, Haun D. Significance of factors contributing to surgical complications and to late outcome after elective surgery of cerebral arteriovenous malformations. J Neurol Neurosurg Psychiatry. 1998;65:547–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pikus HJ, Beach ML, Harbaugh RE. Microsurgical treatment of arteriovenous malformations: analysis and comparison with stereotactic radiosurgery. J Neurosurg. 1998;88(4):641–6.

    Article  CAS  PubMed  Google Scholar 

  15. Hassler W, Hejazi N. Complications of angioma surgery--personal experience in 191 patients with cerebral angiomas. Neurol Med Chir (Tokyo). 1998;38(Suppl):238–44.

    Article  Google Scholar 

  16. Pik JHT, Morgan MK. Microsurgery for small arteriovenous malformations of the brain: Results in 110 consecutive patients. Neurosurgery. 2000;47:571–7.

    CAS  PubMed  Google Scholar 

  17. Hartmann A, et al. Determinants of neurological outcome after surgery for brain arteriovenous malformation. Stroke. 2000;31:2361–4.

    Article  CAS  PubMed  Google Scholar 

  18. Solomon RA, et al. Management of residual dysplastic vessels after cerebral arteriovenous malformation resection: implications for postoperative angiography. Neurosurgery. 2000;46(5):1052–60. discussion 1060–2

    Article  CAS  PubMed  Google Scholar 

  19. Stapf C, et al. Dysplastic vessels after surgery for brain arteriovenous malformations. Stroke. 2002;33(4):1053–6.

    Article  CAS  PubMed  Google Scholar 

  20. Morgan MK, et al. Surgical risks associated with the management of grade I and II brain arteriovenous malformations. Neurosurgery. 2004;54:832–9.

    Article  PubMed  Google Scholar 

  21. Lawton MT, et al. Effect of presenting hemorrhage on outcome after microsurgical resection of brain arteriovenous malformations. Neurosurgery. 2005;56(3):485–93. discussion 485–93

    Article  PubMed  Google Scholar 

  22. Spears J, et al. A discriminative prediction model of neurological outcome for patients undergoing surgery of brain arteriovenous malformations. Stroke. 2006;37(6):1457–64.

    Article  PubMed  Google Scholar 

  23. Merland JJ, et al. Endovascular treatment with isobutyl cyano acrylate in patients with arteriovenous malformation of the brain. Indications, results and complications. Acta Radiol Suppl. 1986;369:621–2.

    CAS  PubMed  Google Scholar 

  24. Vinuela F, et al. Angiographic follow-up of large cerebral AVMs incompletely embolized with isobutyl-2-cyanoacrylate. AJNR Am J Neuroradiol. 1986;7(5):919–25.

    CAS  PubMed  Google Scholar 

  25. Huang Z, et al. Percutaneous endovascular embolization of intracerebral arteriovenous malformations. Experience in 72 cases. Chin Med J (Engl). 1995;108(6):413–9.

    CAS  Google Scholar 

  26. Lundqvist C, Wikholm G, Svendsen P. Embolization of cerebral arteriovenous malformations: Part II--Aspects of complications and late outcome. Neurosurgery. 1996;39(3):460–7. discussion 467–9

    Article  CAS  PubMed  Google Scholar 

  27. Debrun GM, et al. Embolization of the nidus of brain arteriovenous malformations with n-butyl cyanoacrylate. Neurosurgery. 1997;40(1):112–20. discussion 120–1

    CAS  PubMed  Google Scholar 

  28. Sorimachi T, et al. Embolization of cerebral arteriovenous malformations achieved with polyvinyl alcohol particles: angiographic reappearance and complications. AJNR Am J Neuroradiol. 1999;20(7):1323–8.

    CAS  PubMed  Google Scholar 

  29. Valavanis A, Yasargil MG. The endovascular treatment of brain arteriovenous malformations. Adv Tech Stand Neurosurg. 1998;24:131–214.

    Article  CAS  PubMed  Google Scholar 

  30. Song JK, et al. Preoperative embolization of cerebral arteriovenous malformations with silk sutures: analysis and clinical correlation of complications revealed on computerized tomography scanning. J Neurosurg. 2000;92(6):955–60.

    Article  CAS  PubMed  Google Scholar 

  31. Liu HM, Huang YC, Wang YH. Embolization of cerebral arteriovenous malformations with n-butyl-2-cyanoacrylate. J Formos Med Assoc. 2000;99(12):906–13.

    CAS  PubMed  Google Scholar 

  32. Hartmann A, et al. Risk of endovascular treatment of brain arteriovenous malformations. Stroke. 2002;33(7):1816–20.

    Article  CAS  PubMed  Google Scholar 

  33. Meisel HJ, et al. Effect of partial targeted N-butyl-cyano-acrylate embolization in brain AVM. Acta Neurochir. 2002;144(9):879–87. discussion 888

    Article  CAS  PubMed  Google Scholar 

  34. Taylor CL, et al. Complications of preoperative embolization of cerebral arteriovenous malformations. J Neurosurg. 2004;100:810–2.

    Article  PubMed  Google Scholar 

  35. Kim LJ, et al. Postembolization neurological deficits in cerebral arteriovenous malformations: stratification by arteriovenous malformation grade. Neurosurgery. 2006;59:53–9.

    Google Scholar 

  36. Ledezma CJ, et al. Complications of cerebral arteriovenous malformation embolization: multivariate analysis of predictive factors. Neurosurgery. 2006;58:602–11.

    Article  PubMed  Google Scholar 

  37. Haw CS, et al. Complications of embolization of arteriovenous malformations of the brain. J Neurosurg. 2006;104:226–32.

    Article  PubMed  Google Scholar 

  38. van Rooij WJ, Sluzewski M, Beute GN. Brain AVM embolization with Onyx. AJNR Am J Neuroradiol. 2007;28(1):172–7.

    PubMed  Google Scholar 

  39. Mounayer C, et al. Nidal embolization of brain arteriovenous malformations using onyx in 94 patients. AJNR Am J Neuroradiol. 2007;28(3):518–23.

    CAS  PubMed  Google Scholar 

  40. Weber W, et al. Endovascular treatment of intracranial arteriovenous malformations with onyx: technical aspects. AJNR Am J Neuroradiol. 2007;28(2):371–7.

    CAS  PubMed  Google Scholar 

  41. Jayaraman MV, et al. Neurologic complications of arteriovenous malformation embolization using liquid embolic agents. AJNR Am J Neuroradiol. 2008;29(2):242–6.

    Article  CAS  PubMed  Google Scholar 

  42. Katsaridis V, Papagiannaki C, Aimar E. Curative embolization of cerebral arteriovenous malformations (AVMs) with Onyx in 101 patients. Neuroradiology. 2008;50(7):589–97.

    Article  PubMed  Google Scholar 

  43. Panagiotopoulos V, et al. Embolization of intracranial arteriovenous malformations with ethylene-vinyl alcohol copolymer (Onyx). AJNR Am J Neuroradiol. 2009;30(1):99–106.

    Article  CAS  PubMed  Google Scholar 

  44. Pierot L, et al. Endovascular treatment of brain arteriovenous malformations using onyx: Results of a prospective, multicenter study. J Neuroradiol. 2009;36(3):147–52.

    Article  CAS  PubMed  Google Scholar 

  45. Gao K, et al. Embolization of brain arteriovenous malformations with ethylene vinyl alcohol copolymer: technical aspects. Chin Med J (Engl). 2009;122(16):1851–6.

    Google Scholar 

  46. Maimon S, et al. Brain arteriovenous malformation treatment using a combination of Onyx and a new detachable tip microcatheter, SONIC: short-term results. AJNR Am J Neuroradiol. 2010;31(5):947–54.

    Article  CAS  PubMed  Google Scholar 

  47. Lv X, et al. Complication risk of endovascular embolization for cerebral arteriovenous malformation. Eur J Radiol. 2011;80(3):776–9.

    Article  PubMed  Google Scholar 

  48. Xu F, et al. Onyx embolization for the treatment of brain arteriovenous malformations. Acta Neurochir. 2011;153(4):869–78.

    Article  PubMed  Google Scholar 

  49. Saatci I, et al. Endovascular treatment of brain arteriovenous malformations with prolonged intranidal Onyx injection technique: long-term results in 350 consecutive patients with completed endovascular treatment course. J Neurosurg. 2011;115(1):75–6.

    Article  Google Scholar 

  50. Colombo F, et al. Linear accelerator radiosurgery of cerebral arteriovenous malformations. Neurosurgery. 1989;24(6):833–40.

    Article  CAS  PubMed  Google Scholar 

  51. Lunsford LD, et al. Stereotactic radiosurgery for arteriovenous malformations of the brain. J Neurosurg. 1991;75(4):512–24.

    Article  CAS  PubMed  Google Scholar 

  52. Coffey RJ, Nichols DA, Shaw EG. Stereotactic radiosurgical treatment of cerebral arteriovenous malformations. Gamma Unit Radiosurgery Study Group. Mayo Clin Proc. 1995;70:214–22.

    Article  CAS  PubMed  Google Scholar 

  53. Kobayashi T, et al. Gamma knife treatment of AVM of the basal ganglia and thalamus. No To Shinkei. 1996;48(4):351–6.

    CAS  PubMed  Google Scholar 

  54. Aoki Y, et al. Clinical evaluation of gamma knife radiosurgery for intracranial arteriovenous malformation. Radiat Med. 1996;14(5):265–8.

    CAS  PubMed  Google Scholar 

  55. Karlsson B, Lindquist C, Steiner L. Prediction of obliteration after Gamma Knife surgery for cerebral arteriovenous malformations. Neurosurgery. 1997;40(3):425–31.

    CAS  PubMed  Google Scholar 

  56. Yamamoto M, et al. Radiation-related adverse effects observed on neuro-imaging several years after radiosurgery for cerebral arteriovenous malformations. Surg Neurol. 1998;49(4):385–97. discussion 397–8

    Article  CAS  PubMed  Google Scholar 

  57. Miyawaki L, et al. Five year results of LINAC radiosurgery for arteriovenous malformations: outcome for large AVMS. Int J Radiat Oncol Biol Phys. 1999;44(5):1089–106.

    Article  CAS  PubMed  Google Scholar 

  58. Pan DH, et al. Gamma knife radiosurgery as a single treatment modality for large cerebral arteriovenous malformations. J Neurosurg. 2000;93(Suppl 3):113–9.

    PubMed  Google Scholar 

  59. Kurita H, et al. Results of radiosurgery for brain stem arteriovenous malformations. J Neurol Neurosurg Psychiatry. 2000;68(5):563–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Massager N, et al. Gamma knife radiosurgery for brainstem arteriovenous malformations: preliminary results. J Neurosurg. 2000;93(Suppl 3):102–3.

    PubMed  Google Scholar 

  61. Schlienger M, et al. Linac radiosurgery for cerebral arteriovenous malformations: results in 169 patients. Int J Radiat Oncol Biol Phys. 2000;46(5):1135–42.

    Article  CAS  PubMed  Google Scholar 

  62. Zhou D, et al. Rotating Gamma System radiosurgery for cerebral arteriovenous malformations. Stereotact Funct Neurosurg. 2000;75(2-3):109–16.

    Article  CAS  PubMed  Google Scholar 

  63. Hadjipanayis CG, et al. Stereotactic radiosurgery for motor cortex region arteriovenous malformations. Neurosurgery. 2001;48(1):70–6. discussion 76–7

    CAS  PubMed  Google Scholar 

  64. Smyth MD, et al. Stereotactic radiosurgery for pediatric intracranial arteriovenous malformations: the University of California at San Francisco experience. J Neurosurg. 2002;97(1):48–55.

    Article  PubMed  Google Scholar 

  65. Pollock BE, Gorman D, Coffey RJ. Patient outcomes after arteriovenous malformation radiosurgical management: Results based on a 5- to 14-year follow-up study. Neurosurgery. 2003;52(6):1291–7.

    Article  PubMed  Google Scholar 

  66. Friedman WA, et al. Analysis of factors predictive of success or complications in arteriovenous malformation radiosurgery. Neurosurgery. 2003;52(2):296–307. discussion 307–8

    Article  PubMed  Google Scholar 

  67. Zipfel GJ, et al. Do the morphological characteristics of arteriovenous malformations affect the results of radiosurgery? J Neurosurg. 2004;101:390–2.

    Article  Google Scholar 

  68. Veznedaroglu E, et al. Fractionated stereotactic radiotherapy for the treatment of large arteriovenous malformations with or without previous partial embolization. Neurosurgery. 2004;55:519–31.

    Article  PubMed  Google Scholar 

  69. Shin M, et al. Analysis of nidus obliteration rates after gamma knife surgery for arteriovenous malformations based on long-term follow-up data: the University of Tokyo experience. J Neurosurg. 2004;101(1):18–24.

    Article  PubMed  Google Scholar 

  70. Izawa M, et al. Long-term complications after gamma knife surgery for arteriovenous malformations. J Neurosurg. 2005;102(Suppl):34–7.

    Article  Google Scholar 

  71. Maruyama K, et al. The risk of hemorrhage after radiosurgery for cerebral arteriovenous malformations. N Engl J Med. 2005;352(2):146–53.

    Article  CAS  PubMed  Google Scholar 

  72. Zabel A, et al. Treatment outcome after linac-based radiosurgery in cerebral arteriovenous malformations: retrospective analysis of factors affecting obliteration. Radiother Oncol. 2005;77(1):105–10.

    Article  PubMed  Google Scholar 

  73. Andrade-Souza YM, et al. Radiosurgery for basal ganglia, internal capsule, and thalamus arteriovenous malformation: clinical outcome. Neurosurgery. 2005;56(1):56–63. discussion 63–4

    Article  PubMed  Google Scholar 

  74. Andrade-Souza YM, et al. Radiosurgical treatment for rolandic arteriovenous malformations. J Neurosurg. 2006;105:689–97.

    Article  PubMed  Google Scholar 

  75. Cohen-Gadol AA, Pollock BE. Radiosurgery for arteriovenous malformations in children. J Neurosurg. 2006;104(6 Suppl):388–91.

    PubMed  Google Scholar 

  76. Reyns N, et al. Role of radiosurgery in the management of cerebral arteriovenous malformations in the pediatric age group: Data from a 100-patient series. Neurosurgery. 2007;60:268–76.

    Article  PubMed  Google Scholar 

  77. Kiran NA, et al. Gamma Knife surgery for intracranial arteriovenous malformations in children: a retrospective study in 103 patients. J Neurosurg. 2007;107(6 Suppl):479–84.

    PubMed  Google Scholar 

  78. Karlsson B, et al. Is repeated radiosurgery an alternative to staged radiosurgery for very large brain arteriovenous malformations? J Neurosurg. 2007;107(4):740–4.

    Article  PubMed  Google Scholar 

  79. Liščák R, et al. Arteriovenous malformations after Leksell Gamma Knife radiosurgery: rate of obliteration and complications. Neurosurgery. 2007;60:1005–16.

    Article  PubMed  Google Scholar 

  80. Javalkar V, et al. Gamma knife radiosurgery for arteriovenous malformations located in eloquent regions of the brain. Neurol India. 2009;57(5):617–21.

    Article  PubMed  Google Scholar 

  81. Kim HY, et al. Gamma Knife surgery for large cerebral arteriovenous malformations. J Neurosurg. 2010;113(Suppl):2–8.

    PubMed  Google Scholar 

  82. Yen CP, et al. Gamma Knife surgery for arteriovenous malformations in children. J Neurosurg Pediatr. 2010;6(5):426–34.

    Article  PubMed  Google Scholar 

  83. Sun DQ, et al. The radiosurgical treatment of arteriovenous malformations: obliteration, morbidities, and performance status. Int J Radiat Oncol Biol Phys. 2011;80(2):354–61.

    Article  PubMed  Google Scholar 

  84. Blamek S, Tarnawski R, Miszczyk L. Linac-based stereotactic radiosurgery for brain arteriovenous malformations. Clin Oncol (R Coll Radiol). 2011;23(8):525–31.

    Article  CAS  Google Scholar 

  85. Yen CP, et al. Radiation-induced imaging changes following Gamma Knife surgery for cerebral arteriovenous malformations. J Neurosurg. 2013;118(1):63–73.

    Article  PubMed  Google Scholar 

  86. Strauss I, et al. Critical appraisal of endovascular treatment of brain arteriovenous malformation using Onyx in a series of 92 consecutive patients. Acta Neurochir. 2013;155(4):611–7.

    Article  PubMed  Google Scholar 

  87. Starke RM, et al. A practical grading scale for predicting outcome after radiosurgery for arteriovenous malformations: analysis of 1012 treated patients. J Neurosurg. 2013;119(4):981–7.

    Article  PubMed  Google Scholar 

  88. Pierot L, et al. Endovascular treatment of brain arteriovenous malformations using a liquid embolic agent: results of a prospective, multicentre study (BRAVO). Eur Radiol. 2013;23(10):2838–45.

    Article  CAS  PubMed  Google Scholar 

  89. Gabarros Canals A, et al. Temporal lobe arteriovenous malformations: anatomical subtypes, surgical strategy, and outcomes. J Neurosurg. 2013;119(3):616–28.

    Article  PubMed  Google Scholar 

  90. Taeshineetanakul P, et al. Angioarchitecture determines obliteration rate after radiosurgery in brain arteriovenous malformations. Neurosurgery. 2012;71(6):1071–8. discussion 1079

    Article  PubMed  Google Scholar 

  91. Rodriguez-Hernandez A, et al. Cerebellar arteriovenous malformations: anatomic subtypes, surgical results, and increased predictive accuracy of the supplementary grading system. Neurosurgery. 2012;71(6):1111–24.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Parkhutik V, et al. Postradiosurgery hemorrhage rates of arteriovenous malformations of the brain: influencing factors and evolution with time. Stroke. 2012;43(5):1247–52.

    Article  PubMed  Google Scholar 

  93. Herbert C, et al. Factors predictive of symptomatic radiation injury after linear accelerator-based stereotactic radiosurgery for intracerebral arteriovenous malformations. Int J Radiat Oncol Biol Phys. 2012;83(3):872–7.

    Article  PubMed  Google Scholar 

  94. Cetin IA, et al. Retrospective analysis of linac-based radiosurgery for arteriovenous malformations and testing of the Flickinger formula in predicting radiation injury. Strahlenther Onkol. 2012;188(12):1133–8.

    Article  CAS  PubMed  Google Scholar 

  95. D’Aliberti G, et al. Venous flow rearrangement after treatment of cerebral arteriovenous malformations: a novel approach to evaluate the risks of treatment. World Neurosurg. 2014;82(1-2):160–9.

    Article  PubMed  Google Scholar 

  96. Bilbao CJ, et al. Comparison of indocyanine green fluorescent angiography to digital subtraction angiography in brain arteriovenous malformation surgery. Acta Neurochir. 2015;157(3):351–9.

    Article  PubMed  Google Scholar 

  97. Steiger HJ, et al. Microsurgical resection of Spetzler-Martin grades 1 and 2 unruptured brain arteriovenous malformations results in lower long-term morbidity and loss of quality-adjusted life-years (QALY) than conservative management--results of a single group series. Acta Neurochir. 2015;157(8):1279–87.

    Article  PubMed  Google Scholar 

  98. Tong X, et al. Visual field preservation in surgery of occipital arteriovenous malformations: a prospective study. World Neurosurg. 2015;84(5):1423–36.

    Article  PubMed  Google Scholar 

  99. Tong X, et al. Microsurgical outcome of cerebellar arteriovenous malformations: a single-center experience. World Neurosurg. 2016;95:469–79.

    Article  PubMed  Google Scholar 

  100. Javadpour M, et al. Outcome of microsurgical excision of unruptured brain arteriovenous malformations in ARUBA-eligible patients. Br J Neurosurg. 2016;30:619–22.

    Article  PubMed  Google Scholar 

  101. Lin F, et al. Effect of functional MRI-guided navigation on surgical outcomes: a prospective controlled trial in patients with arteriovenous malformations. J Neurosurg. 2017;126:1863–72.

    Article  PubMed  Google Scholar 

  102. Morgan MK, et al. Complication-effectiveness analysis for brain arteriovenous malformation surgery: a prospective cohort study. Neurosurgery. 2016;79(1):47–57.

    Article  PubMed  Google Scholar 

  103. Schramm J, et al. Microsurgery for cerebral arteriovenous malformations: subgroup outcomes in a consecutive series of 288 cases. J Neurosurg. 2017;126:1056–63.

    Article  PubMed  Google Scholar 

  104. Teo MK, Young AM, George EJS. Comparative surgical outcome associated with the management of brain arteriovenous malformation in a regional neurosurgical centre. Br J Neurosurg. 2016;30:623–30.

    Article  PubMed  Google Scholar 

  105. Unsgard G, et al. Clinical experience with navigated 3D ultrasound angiography (power Doppler) in microsurgical treatment of brain arteriovenous malformations. Acta Neurochir. 2016;158(5):875–83.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Baharvahdat H, et al. Hemorrhagic complications after endovascular treatment of cerebral arteriovenous malformations. AJNR Am J Neuroradiol. 2014;35(5):978–83.

    Article  CAS  PubMed  Google Scholar 

  107. Pan J, et al. Angioarchitectural characteristics associated with complications of embolization in supratentorial brain arteriovenous malformation. AJNR Am J Neuroradiol. 2014;35(2):354–9.

    Article  CAS  PubMed  Google Scholar 

  108. Renieri L, Limbucci N, Mangiafico S. Advances in embolization of bAVMs. Acta Neurochir Suppl. 2016;123:159–66.

    Article  CAS  PubMed  Google Scholar 

  109. Robert T, et al. Angiographic factors influencing the success of endovascular treatment of arteriovenous malformations involving the corpus callosum. J Neurointerv Surg. 2015;7(10):715–20.

    Article  PubMed  Google Scholar 

  110. Blomquist E, et al. Positive correlation between occlusion rate and nidus size of proton beam treated brain arteriovenous malformations (AVMs). Acta Oncol. 2016;55(1):105–12.

    Article  PubMed  Google Scholar 

  111. Bose R, et al. Draining vein shielding in intracranial arteriovenous malformations during gamma-knife: a new way of preventing post gamma-knife edema and hemorrhage. Neurosurgery. 2015;76(5):623–31. discussion 631–2

    Article  PubMed  Google Scholar 

  112. Koltz MT, et al. Long-term outcome of Gamma Knife stereotactic radiosurgery for arteriovenous malformations graded by the Spetzler-Martin classification. J Neurosurg. 2013;118(1):74–83.

    Article  PubMed  Google Scholar 

  113. Paul L, et al. Results for a series of 697 arteriovenous malformations treated by gamma knife: influence of angiographic features on the obliteration rate. Neurosurgery. 2014;75(5):568–83. dicussion 582–3; quiz 583

    Article  PubMed  Google Scholar 

  114. Potts MB, et al. Stereotactic radiosurgery at a low marginal dose for the treatment of pediatric arteriovenous malformations: obliteration, complications, and functional outcomes. J Neurosurg Pediatr. 2014;14(1):1–11.

    Article  PubMed  Google Scholar 

  115. Starke RM, et al. Stereotactic radiosurgery for cerebral arteriovenous malformations: evaluation of long-term outcomes in a multicenter cohort. J Neurosurg. 2017;126:36–44.

    Article  PubMed  Google Scholar 

  116. Walcott BP, et al. Proton beam stereotactic radiosurgery for pediatric cerebral arteriovenous malformations. Neurosurgery. 2014;74(4):367–73. discussion 374

    Article  PubMed  PubMed Central  Google Scholar 

  117. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

    Article  CAS  PubMed  Google Scholar 

  118. Altman DG, Bland JM. Interaction revisited: the difference between two estimates. BMJ. 2003;326(7382):219.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

    Article  PubMed  Google Scholar 

  120. Higgins JP, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Brown RDJ, et al. Natural history, evaluation, and management of intracranial vascular malformations. Mayo Clin Proc. 2005;80(2):269–81.

    Article  PubMed  Google Scholar 

  122. Baskaya MK, et al. Cerebral arteriovenous malformations. Clin Neurosurg. 2006;53:114–44.

    PubMed  Google Scholar 

  123. Davidson AS, Morgan MK. How safe is arteriovenous malformation surgery? A prospective, observational study of surgery as first-line treatment for brain arteriovenous malformations. Neurosurgery. 2010;66(3):498–504. discussion 504–5

    Article  PubMed  Google Scholar 

  124. Morgan MK, et al. Surgical risks associated with the management of Grade I and II brain arteriovenous malformations. Neurosurgery. 2007;61(1 Suppl):417–22. discussion 422–4

    PubMed  Google Scholar 

  125. Lawton MT, Lu DC, Young WL. Sylvian fissure arteriovenous malformations: an application of the Sugita classification to 28 surgical patients. Neurosurgery. 2007;61:29–38.

    Article  PubMed  Google Scholar 

  126. Lawton MT, et al. A supplementary grading scale for selecting patients with brain arteriovenous malformations for surgery. Neurosurgery. 2010;66(4):702–13. discussion 713

    Article  PubMed  PubMed Central  Google Scholar 

  127. Luessenhop AJ, Spence WT. Artificial embolization of cerebral arteries. Report of use in a case of arteriovenous malformation. JAMA. 1960;172:1153–5.

    Article  CAS  Google Scholar 

  128. Szeifert GT, et al. Morphological observations in brain arteriovenous malformations after gamma knife radiosurgery. Prog Neurol Surg. 2013;27:119–29.

    Article  PubMed  Google Scholar 

  129. Szeifert GT, et al. Histopathological changes in cerebral arteriovenous malformations following Gamma Knife radiosurgery. Prog Neurol Surg. 2007;20:212–9.

    Article  PubMed  Google Scholar 

  130. Kano H, et al. Stereotactic radiosurgery for arteriovenous malformations, Part 6: multistaged volumetric management of large arteriovenous malformations. J Neurosurg. 2012;116(1):54–65.

    Article  PubMed  Google Scholar 

  131. Sirin S, et al. Prospective staged volume radiosurgery for large arteriovenous malformations: indications and outcomes in otherwise untreatable patients. Neurosurgery. 2006;58(1):17–27. discussion 17–27

    Article  PubMed  Google Scholar 

  132. Wolak ML, Murphy EC, Powell SZ. Tumefactive cyst with a vascular blush as a late complication after combined embolization and stereotactic radiosurgery treatments for a cerebral arteriovenous malformation. Acta Neurochir. 2007;149(7):705–12. discussion 712

    Article  CAS  PubMed  Google Scholar 

  133. Parkhutik V, et al. Late clinical and radiological complications of stereotactical radiosurgery of arteriovenous malformations of the brain. Neuroradiology. 2013;55(4):405–12.

    Article  PubMed  Google Scholar 

  134. Zabel-du Bois A, et al. Risk of hemorrhage and obliteration rates of LINAC-based radiosurgery for cerebral arteriovenous malformations treated after prior partial embolization. Int J Radiat Oncol Biol Phys. 2007;68(4):999–1003.

    Article  PubMed  Google Scholar 

  135. Huang PP, et al. Long-term outcomes after staged-volume stereotactic radiosurgery for large arteriovenous malformations. Neurosurgery. 2012;71(3):632–43. discussion 643–4

    Article  PubMed  Google Scholar 

  136. Kaido T, et al. Radiosurgery-induced brain tumor. Case report. J Neurosurg. 2001;95(4):710–3.

    Article  CAS  PubMed  Google Scholar 

  137. Husain AM, Mendez M, Friedman AH. Intractable epilepsy following radiosurgery for arteriovenous malformation. J Neurosurg. 2001;95(5):888–92.

    Article  CAS  PubMed  Google Scholar 

  138. Yeo SS, Jang SH. Delayed neural degeneration following gamma knife radiosurgery in a patient with an arteriovenous malformation: a diffusion tensor imaging study. NeuroRehabilitation. 2012;31(2):131–5.

    PubMed  Google Scholar 

  139. Peschillo S, et al. Brain AVMs: an endovascular, surgical, and radiosurgical update. ScientificWorldJournal. 2014;2014:834931.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Weber W, et al. Preoperative embolization of intracranial arteriovenous malformations with Onyx. Neurosurgery. 2007;61(2):244–52. discussion 252–4

    Article  PubMed  Google Scholar 

  141. Hauck EF, et al. Preoperative embolization of cerebral arteriovenous malformations with onyx. AJNR Am J Neuroradiol. 2009;30(3):492–5.

    Article  CAS  PubMed  Google Scholar 

  142. Morgan MK, et al. The failure of preoperative ethylene-vinyl alcohol copolymer embolization to improve outcomes in arteriovenous malformation management: case series. J Neurosurg. 2013;118(5):969–77.

    Article  CAS  PubMed  Google Scholar 

  143. Baskaya MK, Heros RC. Indications for and complications of embolization of cerebral arteriovenous malformations. J Neurosurg. 2006;104(2):183–6. discussion 186–7

    Article  PubMed  Google Scholar 

  144. Ogilvy CS, et al. Recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a Special Writing Group of the Stroke Council, American Stroke Association. Stroke. 2001;32(6):1458–71.

    Article  CAS  PubMed  Google Scholar 

  145. Kano H, et al. Stereotactic radiosurgery for arteriovenous malformations after embolization: a case-control study. J Neurosurg. 2012;117(2):265–75.

    Article  PubMed  Google Scholar 

  146. Andrade-Souza YM, et al. Embolization before radiosurgery reduces the obliteration rate of arteriovenous malformations. Neurosurgery. 2007;60:443–52.

    Article  PubMed  Google Scholar 

  147. Pollock BE, et al. Hemorrhage risk after stereotactic radiosurgery of cerebral arteriovenous malformations. Neurosurgery. 1996;38(4):652–9. discussion 659–61

    Article  CAS  PubMed  Google Scholar 

  148. Hodgson TJ, et al. Embolization of residual fistula following stereotactic radiosurgery in cerebral arteriovenous malformations. AJNR Am J Neuroradiol. 2009;30(1):109–10.

    Article  CAS  PubMed  Google Scholar 

  149. Sanchez-Mejia RO, et al. Radiosurgery facilitates resection of brain arteriovenous malformations and reduces surgical morbidity. Neurosurgery. 2009;64(2):231–8. discussion 238–40

    Article  PubMed  PubMed Central  Google Scholar 

  150. Abla AA, et al. A treatment paradigm for high-grade brain arteriovenous malformations: volume-staged radiosurgical downgrading followed by microsurgical resection. J Neurosurg. 2015;122(2):419–32.

    Article  PubMed  Google Scholar 

  151. Bradac O, et al. Haemorrhage from a radiosurgically treated arteriovenous malformation after its angiographically proven obliteration: a case report. Cen Eur Neurosurg. 2010;71(2):92–5.

    Article  CAS  Google Scholar 

  152. Yamamoto M, et al. Gamma Knife radiosurgery for arteriovenous malformations: Long-term follow-up results focusing on complications occurring more than 5 years after irradiation. Neurosurgery. 1996;38(5):906–14.

    Article  CAS  PubMed  Google Scholar 

  153. Lindqvist M, et al. Angiographic long-term follow-up data for arteriovenous malformations previously proven to be obliterated after gamma knife radiosurgery. Neurosurgery. 2000;46(4):803–8. discussion 809–10

    CAS  PubMed  Google Scholar 

  154. Matsumoto H, et al. Delayed hemorrhage from completely obliterated arteriovenous malformation after gamma knife radiosurgery. Case report. Neurol Med Chir (Tokyo). 2006;46:186–90.

    Article  Google Scholar 

  155. Shin M, et al. Risk of hemorrhage from an arteriovenous malformation confirmed to have been obliterated on angiography after stereotactic radiosurgery. J Neurosurg. 2005;102(5):842–6.

    Article  PubMed  Google Scholar 

  156. Spetzler RF, et al. Normal perfusion pressure breakthrough theory. Clin Neurosurg. 1978;25:651–72.

    CAS  PubMed  Google Scholar 

  157. Mohr JP, et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet. 2014;383(9917):614–21.

    Article  CAS  PubMed  Google Scholar 

  158. Choi JH, et al. Clinical outcome after first and recurrent hemorrhage in patients with untreated brain arteriovenous malformation. Stroke. 2006;37(5):1243–7.

    Article  PubMed  Google Scholar 

  159. Hartmann A, et al. Morbidity of intracranial hemorrhage in patients with cerebral arteriovenous malformation. Stroke. 1998;29(5):931–4.

    Article  CAS  PubMed  Google Scholar 

  160. Greenberg MS. Handbook of neurosurgery. 6th ed. New York, NY: Thieme Medical Publishers; 2006.

    Google Scholar 

  161. Halim AX, et al. Longitudinal risk of intracranial hemorrhage in patients with arteriovenous malformation of the brain within a defined population. Stroke. 2004;35:1697–702.

    Article  PubMed  Google Scholar 

  162. Spetzler RF, Ponce FA. A 3-tier classification of cerebral arteriovenous malformations. Clinical article. J Neurosurg. 2011;114(3):842–9.

    Article  PubMed  Google Scholar 

  163. Crowley RW, et al. Endovascular advances for brain arteriovenous malformations. Neurosurgery. 2014;74(Suppl 1):S74–82.

    Article  PubMed  Google Scholar 

  164. Kiran NA, et al. Gamma knife radiosurgery for arteriovenous malformations of basal ganglia, thalamus and brainstem--a retrospective study comparing the results with that for AVMs at other intracranial locations. Acta Neurochir. 2009;151(12):1575–82.

    Article  PubMed  Google Scholar 

  165. Kano H, et al. Stereotactic radiosurgery for arteriovenous malformations, Part 1: management of Spetzler-Martin Grade I and II arteriovenous malformations. J Neurosurg. 2012;116(1):11–20.

    Article  PubMed  Google Scholar 

  166. Kano H, et al. Stereotactic radiosurgery for arteriovenous malformations, Part 4: management of basal ganglia and thalamus arteriovenous malformations. J Neurosurg. 2012;116(1):33–43.

    Article  PubMed  Google Scholar 

  167. Kano H, et al. Stereotactic radiosurgery for arteriovenous malformations, Part 5: management of brainstem arteriovenous malformations. J Neurosurg. 2012;116(1):44–53.

    Article  PubMed  Google Scholar 

  168. Kano H, et al. Stereotactic radiosurgery for arteriovenous malformations, part 2: management of pediatric patients. J Neurosurg Pediatr. 2012;9(1):1–10.

    Article  PubMed  Google Scholar 

  169. Kano H, et al. Stereotactic radiosurgery for arteriovenous malformations, Part 3: outcome predictors and risks after repeat radiosurgery. J Neurosurg. 2012;116(1):21–32.

    Article  PubMed  Google Scholar 

  170. Sirin S, et al. Prospective staged volume radiosurgery for large arteriovenous malformations: indications and outcomes in otherwise untreatable patients. Neurosurgery. 2008;62(Suppl 2):744–54.

    PubMed  Google Scholar 

  171. Sirin S, et al. Large arteriovenous malformations: indications and outcomes in otherwise untreatable patients. Neurosurgery. 2006;58:17–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Bradáč M.D., M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bradáč, O., Beneš, V. (2017). Neurological Outcome and Efficacy of AVM Treatment. In: Beneš, V., Bradáč, O. (eds) Brain Arteriovenous Malformations. Springer, Cham. https://doi.org/10.1007/978-3-319-63964-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63964-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63963-5

  • Online ISBN: 978-3-319-63964-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics