Skip to main content

Treatment of AVM: Stereotactic Radiosurgery

  • Chapter
  • First Online:
Brain Arteriovenous Malformations

Abstract

The role of radiosurgery in the management of arteriovenous malformations (AVMs) is well established. Optimal treatment modality for AVMs should be decided by multi-disciplinary teams, and radiosurgeons are recommended to be integral part of such a team. The decision making process will consider a range of patient, lesion and institution specific factors. Patient factors include presentation, age, clinical state, gender and patient preferences. Lesion specific factors are location of the AVM, its size, the pattern of venous drainage, the feeding arterial supply, the shape of the nidus, and other dynamic angio-architectural features that are best studied by DSA. The goals of pre-treatment consultation are to adequately inform and consent the patient, and to assess any particular issues that could impact on treatment delivery. The rate of thrombo-obliteration is 60–80%, which typically occurs within 4 years after radiosurgical treatment. It primarily depends on the marginal dose delivered to the edge of the AVM, and on lesion volume. As the primary aim of any AVM treatment is the complete elimination of the pathological arteriovenous shunt, in the case of incomplete obliteration several salvage treatments are available. These include surgical resection and embolization of the residual nidus in selected cases, and a second radiosurgical treatment leading to obliteration of two third of eligible lesions. The rate of permanent radiation induced complications is approximately 4% in unselected patient population, determined by prescribed radiation dose, prescription isodose volume and location. The rate of late complications like cyst formation, radiation necrosis or secondary tumors is exceedingly low. Bleeding risk and the risk of its resulting morbidity/mortality is not increased compared with untreated lesions during the latency period until full obliteration. Approximately 30% of AVM patients present with seizures, and the rate is even higher in large AVMs. Although seizure control is not the primary aim of radiosurgery, 44–69% of epileptic patients become seizure free after radiosurgery, which is a compatible rate of seizure freedom after microsurgery. Controversial issues of AVM radiosurgery, such as treatment of large AVMs, prior embolization and treating unruptured AVMs are also discussed. Even AVMs larger than 10 cm3 can now be treated by staged-volume radiosurgery resulting in an obliteration rate of approximately 60% with acceptable morbidity. Embolization before radiosurgery may be considered to secure a flow aneurysm, or if a significant segmental volume reduction can be realistically achieved. However, an ill-considered embolization resulting in a patchy deposition of embolic material that may make radiosurgery less efficacious together with additional procedural risks is not recommended. Based on the low rate of cumulative morbidity and mortality together with high rate of 5-year obliteration after contemporary radiosurgery, and with available data on natural history, a follow-up duration of 15–20 years is expected to realize benefits of radiosurgery for selected patients with unruptured AVMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rowe JG, Radatz MW, Walton L, Kemeny AA. Changing utilization of stereotactic radiosurgery in the UK: the Sheffield experience. Br J Neurosurg. 2002;16(5):477–82.

    Article  CAS  PubMed  Google Scholar 

  2. Kemeny AA, Radatz MW, Rowe JG, Walton L, Hampshire A. Gamma knife radiosurgery for cerebral arteriovenous malformations. Acta Neurochir Suppl. 2004;91:55–63.

    CAS  PubMed  Google Scholar 

  3. Gentili F, Schwartz M, TerBrugge K, Wallace MC, Willinsky R, Young C. A multidisciplinary approach to the treatment of brain vascular malformations. Adv Tech Stand Neurosurg. 1992;19:179–207.

    Article  CAS  PubMed  Google Scholar 

  4. Mohr JP, Parides MK, Stapf C, Moquete E, Moy CS, Overbey JR, et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet. 2014;383(9917):614–21.

    Article  CAS  PubMed  Google Scholar 

  5. Cenzato M, Delitala A, Delfini R, Pasqualin A, Maira G, Esposito V, et al. Position statement from the Italian Society of Neurosurgery on the ARUBA Study. J Neurosurg Sci. 2016;60(1):126–30.

    PubMed  Google Scholar 

  6. Meyer-Heim AD, Boltshauser E. Spontaneous intracranial haemorrhage in children: aetiology, presentation and outcome. Brain Dev. 2003;25(6):416–21.

    Article  PubMed  Google Scholar 

  7. Kondziolka D, McLaughlin MR, Kestle JR. Simple risk predictions for arteriovenous malformation hemorrhage. Neurosurgery. 1995;37(5):851–5.

    Article  CAS  PubMed  Google Scholar 

  8. Toma AK, Davagnanam I, Ganesan V, Brew S. Cerebral arteriovenous shunts in children. Neuroimaging Clin N Am. 2013;23(4):757–70.

    Article  PubMed  Google Scholar 

  9. Crawford PM, West CR, Chadwick DW, Shaw MD. Arteriovenous malformations of the brain: natural history in unoperated patients. J Neurol Neurosurg Psychiatry. 1986;49(1):1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stapf C, Mast H, Sciacca RR, Choi JH, Khaw AV, Connolly ES, et al. Predictors of hemorrhage in patients with untreated brain arteriovenous malformation. Neurology. 2006;66(9):1350–5.

    Article  CAS  PubMed  Google Scholar 

  11. Nagy G, Rowe JG, Radatz MW, Hodgson TJ, Coley SC, Kemeny AA. A historical analysis of single-stage gamma knife radiosurgical treatment for large arteriovenous malformations: evolution and outcomes. Acta Neurochir. 2012;154(3):383–94.

    Article  PubMed  Google Scholar 

  12. Salonen Ros H, Lichtenstein P, Bellocco R, Petersson G, Cnattingius S. Increased risks of circulatory diseases in late pregnancy and puerperium. Epidemiology. 2001;12(4):456–60.

    Article  CAS  PubMed  Google Scholar 

  13. Robinson JL, Hall CS, Sedzimir CB. Arteriovenous malformations, aneurysms, and pregnancy. J Neurosurg. 1974;41(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  14. Horton JC, Chambers WA, Lyons SL, Adams RD, Kjellberg RN. Pregnancy and the risk of hemorrhage from cerebral arteriovenous malformations. Neurosurgery. 1990;27(6):867–71.

    Article  CAS  PubMed  Google Scholar 

  15. Liu XJ, Wang S, Zhao YL, Teo M, Guo P, Zhang D, et al. Risk of cerebral arteriovenous malformation rupture during pregnancy and puerperium. Neurology. 2014;82(20):1798–803.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tonetti D, Kano H, Bowden G, Flickinger JC, Lunsford LD. Hemorrhage during pregnancy in the latency interval after stereotactic radiosurgery for arteriovenous malformations. J Neurosurg. 2014;121(Suppl):226–31.

    PubMed  Google Scholar 

  17. Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg. 1986;65(4):476–83.

    Article  CAS  PubMed  Google Scholar 

  18. Hodgson TJ, Kemeny AA, Gholkar A, Deasy N. Embolization of residual fistula following stereotactic radiosurgery in cerebral arteriovenous malformations. AJNR Am J Neuroradiol. 2009;30(1):109–10.

    Article  CAS  PubMed  Google Scholar 

  19. Nagy G, Grainger A, Hodgson TJ, Rowe JG, Coley SC, Kemeny AA, et al. Staged-volume radiosurgery of large arteriovenous malformations improves outcome by reducing the rate of adverse radiation effects. Neurosurgery. 2017;80(2):180–92.

    PubMed  Google Scholar 

  20. Szeifert GT, Levivier M, Lorenzoni J, Nyary I, Major O, Kemeny AA. Morphological observations in brain arteriovenous malformations after gamma knife radiosurgery. Prog Neurol Surg. 2013;27:119–29.

    Article  PubMed  Google Scholar 

  21. Major O, Szeifert GT, Radatz MW, Walton L, Kemeny AA. Experimental stereotactic gamma knife radiosurgery. Vascular contractility studies of the rat middle cerebral artery after chronic survival. Neurol Res. 2002;24(2):191–8.

    Article  PubMed  Google Scholar 

  22. Major O, Szeifert GT, Fazekas I, Vitanovics D, Csonka E, Kocsis B, et al. Effect of a single high-dose gamma irradiation on cultured cells in human cerebral arteriovenous malformation. J Neurosurg. 2002;97(5 Suppl):459–63.

    PubMed  Google Scholar 

  23. Szeifert GT, Kemeny AA, Timperley WR, Forster DM. The potential role of myofibroblasts in the obliteration of arteriovenous malformations after radiosurgery. Neurosurgery. 1997;40(1):61–5.

    CAS  PubMed  Google Scholar 

  24. Szeifert GT, Major O, Kemeny AA. Ultrastructural changes in arteriovenous malformations after gamma knife surgery: an electron microscopic study. J Neurosurg. 2005;102(Suppl):289–92.

    Article  Google Scholar 

  25. Steinberg GK, Chang SD, Levy RP, Marks MP, Frankel K, Marcellus M. Surgical resection of large incompletely treated intracranial arteriovenous malformations following stereotactic radiosurgery. J Neurosurg. 1996;84(6):920–8.

    Article  CAS  PubMed  Google Scholar 

  26. Schneider BF, Eberhard DA, Steiner LE. Histopathology of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg. 1997;87(3):352–7.

    Article  CAS  PubMed  Google Scholar 

  27. Tu J, Stoodley MA, Morgan MK, Storer KP, Smee R. Different responses of cavernous malformations and arteriovenous malformations to radiosurgery. J Clin Neurosci. 2009;16(7):945–9.

    Article  CAS  PubMed  Google Scholar 

  28. Yamamoto M, Jimbo M, Kobayashi M, Toyoda C, Ide M, Tanaka N, et al. Long-term results of radiosurgery for arteriovenous malformation: neurodiagnostic imaging and histological studies of angiographically confirmed nidus obliteration. Surg Neurol. 1992;37(3):219–30.

    Article  CAS  PubMed  Google Scholar 

  29. Friedman WA. Stereotactic radiosurgery of intracranial arteriovenous malformations. Neurosurg Clin N Am. 2013;24(4):561–74.

    Article  PubMed  Google Scholar 

  30. Pollock BE, Link MJ, Stafford SL, Garces YI, Foote RL. Stereotactic radiosurgery for arteriovenous malformations: The effect of treatment period on patient outcomes. Neurosurgery. 2016;78(4):499–509.

    Article  PubMed  Google Scholar 

  31. Flickinger JC, Pollock BE, Kondziolka D, Lunsford LD. A dose-response analysis of arteriovenous malformation obliteration after radiosurgery. Int J Radiat Oncol Biol Phys. 1996;36(4):873–9.

    Article  CAS  PubMed  Google Scholar 

  32. Karlsson B, Lindquist C, Steiner L. Prediction of obliteration after gamma knife surgery for cerebral arteriovenous malformations. Neurosurgery. 1997;40(3):425–30.

    CAS  PubMed  Google Scholar 

  33. Ellis TL, Friedman WA, Bova FJ, Kubilis PS, Buatti JM. Analysis of treatment failure after radiosurgery for arteriovenous malformations. J Neurosurg. 1998;89(1):104–10.

    Article  CAS  PubMed  Google Scholar 

  34. Buis DR, Lagerwaard FJ, Barkhof F, Dirven CM, Lycklama GJ, Meijer OW, et al. Stereotactic radiosurgery for brain AVMs: role of interobserver variation in target definition on digital subtraction angiography. Int J Radiat Oncol Biol Phys. 2005;62(1):246–52.

    Article  PubMed  Google Scholar 

  35. Ding D, Yen CP, Starke RM, Xu Z, Sheehan JP. Effect of prior hemorrhage on intracranial arteriovenous malformation radiosurgery outcomes. Cerebrovasc Dis. 2015;39(1):53–62.

    Article  PubMed  Google Scholar 

  36. Dinca EB, de Lacy P, Yianni J, Rowe J, Radatz MW, Preotiuc-Pietro D, et al. Gamma knife surgery for pediatric arteriovenous malformations: a 25-year retrospective study. J Neurosurg Pediatr. 2012;10(5):445–50.

    Article  PubMed  Google Scholar 

  37. Starke RM, Ding D, Kano H, Mathieu D, Huang PP, Feliciano C, et al. International multicenter cohort study of pediatric brain arteriovenous malformations. Part 2: Outcomes after stereotactic radiosurgery. J Neurosurg Pediatr. 2017;19(2):136–48.

    Article  PubMed  Google Scholar 

  38. Nagy G, Major O, Rowe JG, Radatz MW, Hodgson TJ, Coley SC, et al. Stereotactic radiosurgery for arteriovenous malformations located in deep critical regions. Neurosurgery. 2012;70(6):1458–69.

    Article  PubMed  Google Scholar 

  39. Andrade-Souza YM, Ramani M, Scora D, Tsao MN. terBrugge K, Schwartz ML. Embolization before radiosurgery reduces the obliteration rate of arteriovenous malformations. Neurosurgery. 2007;60(3):443–51.

    Article  PubMed  Google Scholar 

  40. Kano H, Kondziolka D, Flickinger JC, Park KJ, Iyer A, Yang HC, et al. Stereotactic radiosurgery for arteriovenous malformations after embolization: a case-control study. J Neurosurg. 2012;117(2):265–75.

    Article  PubMed  Google Scholar 

  41. Kano H, Kondziolka D, Flickinger JC, Yang HC, Flannery TJ, Awan NR, et al. Stereotactic radiosurgery for arteriovenous malformations, Part 3: outcome predictors and risks after repeat radiosurgery. J Neurosurg. 2012;116(1):21–32.

    Article  PubMed  Google Scholar 

  42. Zipfel GJ, Bradshaw P, Bova FJ, Friedman WA. Do the morphological characteristics of arteriovenous malformations affect the results of radiosurgery? J Neurosurg. 2004;101(3):393–401.

    Article  PubMed  Google Scholar 

  43. Pollock BE, Kondziolka D, Flickinger JC, Patel AK, Bissonette DJ, Lunsford LD. Magnetic resonance imaging: an accurate method to evaluate arteriovenous malformations after stereotactic radiosurgery. J Neurosurg. 1996;85(6):1044–9.

    Article  CAS  PubMed  Google Scholar 

  44. Griffiths PD, Hoggard N, Warren DJ, Wilkinson ID, Anderson B, Romanowski CA. Brain arteriovenous malformations: assessment with dynamic MR digital subtraction angiography. AJNR Am J Neuroradiol. 2000;21(10):1892–9.

    CAS  PubMed  Google Scholar 

  45. Warren DJ, Hoggard N, Walton L, Radatz MW, Kemeny AA, Forster DM, et al. Cerebral arteriovenous malformations: comparison of novel magnetic resonance angiographic techniques and conventional catheter angiography. Neurosurgery. 2001;48(5):973–82.

    CAS  PubMed  Google Scholar 

  46. Coley SC, Wild JM, Wilkinson ID, Griffiths PD. Neurovascular MRI with dynamic contrast-enhanced subtraction angiography. Neuroradiology. 2003;45(12):843–50.

    Article  CAS  PubMed  Google Scholar 

  47. Kemeny AA, Dias PS, Forster DM. Results of stereotactic radiosurgery of arteriovenous malformations: an analysis of 52 cases. J Neurol Neurosurg Psychiatry. 1989;52(5):554–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yen CP, Varady P, Sheehan J, Steiner M, Steiner L. Subtotal obliteration of cerebral arteriovenous malformations after gamma knife surgery. J Neurosurg. 2007;106(3):361–9.

    Article  PubMed  Google Scholar 

  49. Kano H, Lunsford LD, Flickinger JC, Yang HC, Flannery TJ, Awan NR, et al. Stereotactic radiosurgery for arteriovenous malformations, Part 1: management of Spetzler-Martin Grade I and II arteriovenous malformations. J Neurosurg. 2012;116(1):11–20.

    Article  PubMed  Google Scholar 

  50. Karlsson B, Kihlstrom L, Lindquist C, Steiner L. Gamma knife surgery for previously irradiated arteriovenous malformations. Neurosurgery. 1998;42(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  51. Abla AA, Rutledge WC, Seymour ZA, Guo D, Kim H, Gupta N, et al. A treatment paradigm for high-grade brain arteriovenous malformations: volume-staged radiosurgical downgrading followed by microsurgical resection. J Neurosurg. 2015;122(2):419–32.

    Article  PubMed  Google Scholar 

  52. Levegrün S, Hof H, Essig M, Schlegel W, Debus J. Radiation-induced changes of brain tissue after radiosurgery in patients with arteriovenous malformations: correlation with dose distribution parameters. Int J Radiat Oncol Biol Phys. 2004;59(3):796–808.

    Article  PubMed  Google Scholar 

  53. Yen CP, Matsumoto JA, Wintermark M, Schwyzer L, Evans AJ, Jensen ME, et al. Radiation-induced imaging changes following Gamma Knife surgery for cerebral arteriovenous malformations. J Neurosurg. 2013;118(1):63–73.

    Article  PubMed  Google Scholar 

  54. Ding D, Yen CP, Xu Z, Starke RM, Sheehan JP. Radiosurgery for primary motor and sensory cortex arteriovenous malformations: outcomes and the effect of eloquent location. Neurosurgery. 2013;73(5):816–24.

    Article  PubMed  Google Scholar 

  55. Ding D, Yen CP, Xu Z, Starke RM, Sheehan JP. Radiosurgery for low-grade intracranial arteriovenous malformations. J Neurosurg. 2014;121(2):457–67.

    Article  PubMed  Google Scholar 

  56. Izawa M, Hayashi M, Chernov M, Nakaya K, Ochiai T, Murata N, et al. Long-term complications after gamma knife surgery for arteriovenous malformations. J Neurosurg. 2005;102(Suppl):34–7.

    Article  Google Scholar 

  57. Pollock BE, Link MJ, Branda ME, Storlie CB. Incidence and management of late adverse radiation effects after arteriovenous malformation radiosurgery. Neurosurgery. 2017; doi:10.1093/neuros/nyx010.

  58. Patel TR, Chiang VL. Secondary neoplasms after stereotactic radiosurgery. World Neurosurg. 2014;81(3-4):594–9.

    Article  PubMed  Google Scholar 

  59. Xhumari A, Rroji A, Enesi E, Bushati T, Sallabanda Diaz K, Petrela M. Glioblastoma after AVM radiosurgery. Case report and review of the literature. Acta Neurochir. 2015;157(5):889–95.

    Article  PubMed  Google Scholar 

  60. Sheehan J, Yen CP, Steiner L. Gamma knife surgery-induced meningioma. Report of two cases and review of the literature. J Neurosurg. 2006;105(2):325–9.

    Article  PubMed  Google Scholar 

  61. Rowe J, Grainger A, Walton L, Silcocks P, Radatz M, Kemeny A. Risk of malignancy after gamma knife stereotactic radiosurgery. Neurosurgery. 2007;60(1):60–5.

    Article  PubMed  Google Scholar 

  62. Pollock BE, Link MJ, Stafford SL, Parney IF, Garces YI, Foote RL. The risk of radiation-induced tumors or malignant transformation after single-fraction intracranial radiosurgery: Results based on a 25-year experience. Int J Radiat Oncol Biol Phys. 2017;97(5):919–23.

    Article  PubMed  Google Scholar 

  63. Friedman WA, Blatt DL, Bova FJ, Buatti JM, Mendenhall WM, Kubilis PS. The risk of hemorrhage after radiosurgery for arteriovenous malformations. J Neurosurg. 1996;84(6):912–9.

    Article  CAS  PubMed  Google Scholar 

  64. Pollock BE, Flickinger JC, Lunsford LD, Bissonette DJ, Kondziolka D. Hemorrhage risk after stereotactic radiosurgery of cerebral arteriovenous malformations. Neurosurgery. 1996;38(4):652–9.

    Article  CAS  PubMed  Google Scholar 

  65. Yen CP, Sheehan JP, Schwyzer L, Schlesinger D. Hemorrhage risk of cerebral arteriovenous malformations before and during the latency period after GAMMA knife radiosurgery. Stroke. 2011;42(6):1691–6.

    Article  PubMed  Google Scholar 

  66. Shin M, Kawahara N, Maruyama K, Tago M, Ueki K, Kirino T. Risk of hemorrhage from an arteriovenous malformation confirmed to have been obliterated on angiography after stereotactic radiosurgery. J Neurosurg. 2005;102(5):842–6.

    Article  PubMed  Google Scholar 

  67. Ding D, Yen CP, Starke RM, Xu Z, Sheehan JP. Radiosurgery for ruptured intracranial arteriovenous malformations. J Neurosurg. 2014;121(2):470–81.

    Article  PubMed  Google Scholar 

  68. Nerva JD, Mantovani A, Barber J, Kim LJ, Rockhill JK, Hallam DK, et al. Treatment outcomes of unruptured arteriovenous malformations with a subgroup analysis of ARUBA (A Randomized Trial of Unruptured Brain Arteriovenous Malformations)-eligible patients. Neurosurgery. 2015;76(5):563–70.

    Article  PubMed  Google Scholar 

  69. Chen CJ, Chivukula S, Ding D, Starke RM, Lee CC, Yen CP, et al. Seizure outcomes following radiosurgery for cerebral arteriovenous malformations. Neurosurg Focus. 2014;37(3):E17.

    Article  Google Scholar 

  70. Al-Shahi SR. The outlook for adults with epileptic seizure(s) associated with cerebral cavernous malformations or arteriovenous malformations. Epilepsia. 2012;53(Suppl 4):34–42.

    Article  Google Scholar 

  71. Kraemer DL, Awad IA. Vascular malformations and epilepsy: clinical considerations and basic mechanisms. Epilepsia. 1994;35(Suppl 6):S30–43.

    Article  PubMed  Google Scholar 

  72. Fierstra J, Conklin J, Krings T, Slessarev M, Han JS, Fisher JA, et al. Impaired peri-nidal cerebrovascular reserve in seizure patients with brain arteriovenous malformations. Brain. 2011;134(Pt 1):100–9.

    Article  PubMed  Google Scholar 

  73. Baranoski JF, Grant RA, Hirsch LJ, Visintainer P, Gerrard JL, Gunel M, et al. Seizure control for intracranial arteriovenous malformations is directly related to treatment modality: a meta-analysis. J Neurointerv Surg. 2014;6(9):684–90.

    Article  PubMed  Google Scholar 

  74. Starke RM, Yen CP, Ding D, Sheehan JP. A practical grading scale for predicting outcome after radiosurgery for arteriovenous malformations: analysis of 1012 treated patients. J Neurosurg. 2013;119(4):981–7.

    Article  PubMed  Google Scholar 

  75. Pollock BE, Flickinger JC, Lunsford LD, Maitz A, Kondziolka D. Factors associated with successful arteriovenous malformation radiosurgery. Neurosurgery. 1998;42(6):1239–44.

    Article  CAS  PubMed  Google Scholar 

  76. Pollock BE, Flickinger JC. A proposed radiosurgery-based grading system for arteriovenous malformations. J Neurosurg. 2002;96(1):79–85.

    Article  PubMed  Google Scholar 

  77. Pollock BE, Flickinger JC. Modification of the radiosurgery-based arteriovenous malformation grading system. Neurosurgery. 2008;63(2):239–43.

    Article  PubMed  Google Scholar 

  78. Nagy G, Kemeny AA, Pollock BE. Radiosurgery of intracranial vascular malformations. In: Winn HR, editor. Youmans and Winn neurological surgery. 7th ed. New York, NY: Elsevier; 2016. p. 2223–33.

    Google Scholar 

  79. Starke RM, Kano H, Ding D, Lee JY, Mathieu D, Whitesell J, et al. Stereotactic radiosurgery for cerebral arteriovenous malformations: evaluation of long-term outcomes in a multicenter cohort. J Neurosurg. 2017;126(1):36–44.

    Article  PubMed  Google Scholar 

  80. Pollock BE, Storlie CB, Link MJ, Stafford SL, Garces YI, Foote RL. Comparative analysis of arteriovenous malformation grading scales in predicting outcomes after stereotactic radiosurgery. J Neurosurg. 2017;126(3):852–8.

    Article  PubMed  Google Scholar 

  81. Ogilvy CS, Stieg PE, Awad I, Brown RD Jr, Kondziolka D, Rosenwasser R, et al. AHA Scientific Statement: Recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the Stroke Council, American Stroke Association. Stroke. 2001;32(6):1458–71.

    Article  CAS  PubMed  Google Scholar 

  82. Moosa S, Chen CJ, Ding D, Lee CC, Chivukula S, Starke RM, et al. Volume-staged versus dose-staged radiosurgery outcomes for large intracranial arteriovenous malformations. Neurosurg Focus. 2014;37(3):E18.

    Article  PubMed  Google Scholar 

  83. Firlik AD, Levy EI, Kondziolka D, Yonas H. Staged volume radiosurgery followed by microsurgical resection: a novel treatment for giant cerebral arteriovenous malformations: technical case report. Neurosurgery. 1998;43(5):1223–8.

    Article  CAS  PubMed  Google Scholar 

  84. Pollock BE, Kline RW, Stafford SL, Foote RL, Schomberg PJ. The rationale and technique of staged-volume arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys. 2000;48(3):817–24.

    Article  CAS  PubMed  Google Scholar 

  85. Sirin S, Kondziolka D, Niranjan A, Flickinger JC, Maitz AH, Lunsford LD. Prospective staged volume radiosurgery for large arteriovenous malformations: indications and outcomes in otherwise untreatable patients. Neurosurgery. 2006;58(1):17–27.

    Article  PubMed  Google Scholar 

  86. Pollock BE, Link MJ, Stafford SL, Lanzino G, Garces YI, Foote RL. Volume-staged stereotactic radiosurgery for intracranial arteriovenous malformations: Outcomes based on an 18-year experience. Neurosurgery. 2017;80(4):543–50.

    Article  PubMed  Google Scholar 

  87. Seymour ZA, Sneed PK, Gupta N, Lawton MT, Molinaro AM, Young W, et al. Volume-staged radiosurgery for large arteriovenous malformations: an evolving paradigm. J Neurosurg. 2016;124(1):163–74.

    Article  PubMed  Google Scholar 

  88. Spetzler RF, Ponce FA. A 3-tier classification of cerebral arteriovenous malformations. J Neurosurg. 2011;114(3):842–9.

    Article  PubMed  Google Scholar 

  89. Laakso A, Dashti R, Juvela S, Isarakul P, Niemela M, Hernesniemi J. Risk of hemorrhage in patients with untreated Spetzler-Martin grade IV and V arteriovenous malformations: a long-term follow-up study in 63 patients. Neurosurgery. 2011;68(2):372–7. discussion 8

    Article  PubMed  Google Scholar 

  90. Gobin YP, Laurent A, Merienne L, Schlienger M, Aymard A, Houdart E, et al. Treatment of brain arteriovenous malformations by embolization and radiosurgery. J Neurosurg. 1996;85(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  91. Miller RA, Jankowitz B. Endovascular embolization in combination with radiosurgery for treatment of arteriovenous malformations. Prog Neurol Surg. 2013;27:81–8.

    Article  PubMed  Google Scholar 

  92. Rubin BA, Brunswick A, Riina H, Kondziolka D. Advances in radiosurgery for arteriovenous malformations of the brain. Neurosurgery. 2014;74(Suppl 1):S50–9.

    Article  PubMed  Google Scholar 

  93. Amin-Hanjani S. ARUBA results are not applicable to all patients with arteriovenous malformation. Stroke. 2014;45(5):1539–40.

    Article  PubMed  Google Scholar 

  94. Russin J, Spetzler R. Commentary: the ARUBA trial. Neurosurgery. 2014;75(1):E96–7.

    Article  PubMed  Google Scholar 

  95. Starke RM, Sheehan JP, Ding D, Liu KC, Kondziolka D, Crowley RW, et al. Conservative management or intervention for unruptured brain arteriovenous malformations. World Neurosurg. 2014;82(5):e668–9.

    Article  PubMed  Google Scholar 

  96. Cenzato M, Boccardi E, Beghi E, Vajkoczy P, Szikora I, Motti E, et al. European consensus conference on unruptured brain AVMs treatment (Supported by EANS, ESMINT, EGKS, and SINCH). Acta Neurochir. 2017;159(6):1059–64.

    Article  PubMed  Google Scholar 

  97. Ding D, Starke RM, Kano H, Mathieu D, Huang P, Kondziolka D, et al. Radiosurgery for cerebral arteriovenous malformations in a randomized trial of unruptured brain arteriovenous malformations (ARUBA)-eligible patients: a multicenter study. Stroke. 2016;47(2):342–9.

    Article  PubMed  Google Scholar 

  98. Ding D, Starke RM, Kano H, Mathieu D, Huang PP, Kondziolka D, et al. Stereotactic radiosurgery for a randomized trial of unruptured brain arteriovenous malformations (ARUBA)-eligible Spetzler-Martin grade I and II arteriovenous malformations: a multicenter study. World Neurosurg. 2017;102:507–17.

    Google Scholar 

  99. Potts MB, Lau D, Abla AA, Kim H, Young WL, Lawton MT. Current surgical results with low-grade brain arteriovenous malformations. J Neurosurg. 2015;122(4):912–20.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Nagy M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nagy, G., Rowe, J.G., Radatz, M.W.R. (2017). Treatment of AVM: Stereotactic Radiosurgery. In: Beneš, V., Bradáč, O. (eds) Brain Arteriovenous Malformations. Springer, Cham. https://doi.org/10.1007/978-3-319-63964-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63964-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63963-5

  • Online ISBN: 978-3-319-63964-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics