Skip to main content

Passive Stall Control Systems of Power Limitation Modes for Vertical Axis Wind Turbines (VAWT)

  • Chapter
  • First Online:
Analysis and Simulation of Electrical and Computer Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 452))

  • 1350 Accesses

Abstract

Vertical axis wind turbines (VAWT) with direct drive permanent magnet synchronous generator operate with the greatest energy efficiency and reliability in low-power wind energy conversion systems (WECS). This article offers a classification of optimal control methods of such WECS. Special attention is also given to an unexplored area—the development of control systems of power limitation mode when VAWT work at high wind speeds—passive stall and feathering control. In particular, the structures of control systems were developed, the parameters of power regulators were obtained, and these regimes were compared by means of computer simulation. The fractional order control method was also used for this mode and the parameters of fractional order PID power regulator were found by the method of Particle Swarm Optimization (PSO). The article also demonstrates how to realize the mode of passive stall control in the energy-shaping control system (ESCS) previously developed by the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harrison, R., Hau, E., Snel, H.: Large Wind Turbines: Design and Economics. Wiley, Chichester (2000)

    Google Scholar 

  2. Simic, Z., Havelka, J., Vrhovcak, M.: Small wind turbines—a unique segment of the wind power market. Renew. Energy 50, 1027–1036 (2014)

    Article  Google Scholar 

  3. Klymko, V.I.: Wind-solar systems for power supply of low power consumers (in Ukrainian). Ph.D. thesis, Lviv (2016)

    Google Scholar 

  4. Akello, P., Ochieng, F., Kamau, J.: Performance analysis of a direct drive permanent magnet generator for small wind energy applications. J. Sustain. Res. Eng. 1(3), 1–9 (2014)

    Google Scholar 

  5. Bhutta, M., Hayat, N., Farooq, A., Ali, Z., Jamil, S., Hussain, Z.: Vertical axis wind turbine—a review of various configurations and design techniques. Renew. Sustain. Energy Rev. 16, 1926–1939 (2012)

    Article  Google Scholar 

  6. NACA profile coordinates—Airfoil tools. http://airfoiltools.com/airfoil/details?airfoil

  7. Shchur, I.: Estimation of electromagnetic compatibility and efficiency of the adjustable load systems of PMSG in wind turbines. Przegląd Elektrotechniczny 1, 85–90 (2011)

    Google Scholar 

  8. Stiebler, M.: Wind Energy Systems for Electric Power Generation. Springer, London (2008)

    Google Scholar 

  9. Alaimo, A., Esposito, A., Messineo, A., Orlando, C., Tumino, D.: 3D CFD analysis of a vertical axis wind turbine. Energies 8, 3013–3033 (2015)

    Article  Google Scholar 

  10. Tian-Pau, C., Feng-Jiao, L., Hong-His, K., Shih-Ping, C., Li-Chung, S., Shye-Chorng, K.: Comparative analysis on power curve models of wind turbine generator in estimating capacity factor. Energy 73, 88–95 (2014)

    Article  Google Scholar 

  11. Abdullah, M., Yatim, A., Tan, C., Saidur, R.: A review of maximum power point tracking algorithms for wind energy systems. Renew. Sustain. Energy Rev. 16, 3220–3227 (2012)

    Article  Google Scholar 

  12. Marimoto, S., Nakayama, H., Sanada, M.: Sensorless output maximization control for variable-speed wind generation system using IPMSG. IEEE Trans. Ind. Electron. 41(1), 60–67 (2005)

    Google Scholar 

  13. Anders, G., Fredrik, B.: Robust VAWT control system evaluation by coupled aerodynamic and electrical simulations. Renew. Energy 59, 193–201 (2013)

    Article  Google Scholar 

  14. Sareni, B., Abdelli, A., Roboam, X., Tran, D.: Model simplification and optimization of a passive wind turbine generator. Renew. Energy 34, 2640–2650 (2009)

    Article  Google Scholar 

  15. Ming, C., Ying, Z.: The state of the art of wind energy conversion systems and technologies. Energy Convers. Manag. 88, 332–347 (2014)

    Article  Google Scholar 

  16. Shchur, I., Rusek, A., Klymko, V., Gastołek, A., Sosnowski, J.: Analysis of methods of electrical load of permanent magnet synchronous generator for small wind turbines. Maszyny Elektryczny, Zeszyty Problemowe 105(1), 75–81 (2015)

    Google Scholar 

  17. Wang, Q., Chang, L.: An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems. IEEE Trans. Power Electron. 19(5), 1242–1249 (2006)

    Article  Google Scholar 

  18. Whei-Min, L., Chih-Ming, H.: Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system. Energy 35, 2440–2447 (2010)

    Article  Google Scholar 

  19. Ying-Yi, H., Shiue-Der, L., Ching-Sheng, C.: MPPT for PM wind generator using gradient approximation. Energy Convers. Manag. 50, 82–89 (2009)

    Article  Google Scholar 

  20. Eftichios, K., Kostas, K.: Design of a maximum power tracking system for wind-energy-conversion applications. IEEE Trans. Ind. Electron. 2, 486–494 (2006)

    Google Scholar 

  21. Iigo, K., Jon, A., Iigo, M., Jaime, J., Jos, I., Eider, R.: A novel adaptative maximum power point tracking algorithm for small wind turbines. Renew. Energy 63, 785–796 (2014)

    Article  Google Scholar 

  22. Brice, B., Tarek, A., Mohamed, E.: Sliding mode power control of variable-speed wind energy conversion systems. IEEE Trans. Energy Convers. 23(2), 551–558 (2008)

    Article  Google Scholar 

  23. Changliang, X., Qiang, G., Xin, G., Tingna, S., Zhanfeng, S.: Input–output feedback linearization and speed control of a surface permanent-magnet synchronous wind generator with the boost-chopper converter. IEEE Trans. Ind. Electron. 59(9), 967–974 (2012)

    Google Scholar 

  24. Shchur, I., Rusek, A., Biletskyi, Y.: Energy-shaping optimal load control of PMSG in a stand-alone wind turbine as a port-controlled Hamiltonian system. Przegląd Elektrotechniczny 5, 50–55 (2014)

    Google Scholar 

  25. Muteanu, I., Bratcu, A., Cutululis, N., Ceangă, E.: Optimal Control of Wind Energy Systems. Springer, London (2008)

    Google Scholar 

  26. Serban, I., Marinescu, C.: A sensorless control method for variable-speed small wind turbines. Renew. Energy 43, 256–266 (2012)

    Article  Google Scholar 

  27. Andriollo, M., De Bortoli, M., Martinelli, G., Morini, A., Tortella, A.: Control strategies for a VAWT driven PM synchronous generator. Int. Symp. Power Electron. Electrical Drives Autom. Motion SPEEDAM 2008, 804–809 (2008)

    Google Scholar 

  28. Potspov, A.A., Chernykh, V.A.: Fractional calculation of A. Letnikova, fractal and scaling theory (in Russian). Phizmatlit, Moscow (2010)

    Google Scholar 

  29. Schafer, I., Kruger, K.: Modelling of lossy coils using fractional derivatives. J. Phys. D Appl. Phys. 41, 1–8 (2008)

    Article  Google Scholar 

  30. Freeborn, T., Maundy, B., Elwakil, A.: Fractional-order models of supercapacitors, batteries and fuel cells. Mater. Renew. Sustain. Energy 4, 1–7 (2015)

    Article  Google Scholar 

  31. Tijera, M., Maqueda, G., Yague, C., Cano, J.: Analysis of fractal dimension of the wind speed and its relationships with turbulent and stability parameters. In: Ouadfeul, S.-A. (eds.) Fractal Analysis and Chaos in Geosciences (2012). http://cdn.intechopen.com/pdfs/40877/InTech-

  32. Vaikundaselvan, B.: Dynamic model of wind energy conversion systems with fractional order controllers for the variable-speed operation of wind turbine. Int. J. Eng. Sci. Adv. Technol. 2(4), 1115–1121 (2012)

    Google Scholar 

  33. Asrom, K., Hagglund, T.: The future of PID control. Control Eng. Pract. 9, 1163–1175 (2001)

    Article  Google Scholar 

  34. Chen, Y., Moore, K.: Help working with abstracts relay feedback tuning of robust PID controllers with iso-damping property. IEEE Trans. Syst Man Cybernet. Part B (Cybernetics) 35(1), 23–31 (2005)

    Article  Google Scholar 

  35. Burceva, Y.S.: No searching method for calculating of controller settings on minimum quadratic criterion (in Russian). Ph.D. thesis, Moscow (2014)

    Google Scholar 

  36. Rotach, V.Y.: Automatic Control Theory. MEI, Moscow (2004). (in Russian)

    MATH  Google Scholar 

  37. Kopchak, B.L.: Approximation transition functions of fractional order polynomials (in Ukrainian). In: Odessa National Polytechnic University, Scientific and technical journal “Electrotekhichni ta compyuterni systemy” 14, 20–27 (2014)

    Google Scholar 

  38. Ortega, R., van der Schaft, A., Mareels, I., Maschke, B.: Putting energy back in control. IEEE Control Syst. Mag. 21(2), 18–33 (2001)

    Article  Google Scholar 

  39. Ortega, R., van der Schaft, A., Escobar, G., Maschke, B.: Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ortega, R., van der Schaft, A., Castanos, F., Astolfi, A.: Control by interconnection and standard passivity-based control of port-Hamiltonian systems. IEEE Trans. Autom. Control 53(11), 2527–2542 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  41. Zou, Z., Yu, H., Tang, Y.: Maximum output power of PMSM based on energy-shaping and PWM control principle. In: IEEE International Conference on Automation and Logistics, Qingdao, China, pp. 1556–1560 (2008)

    Google Scholar 

  42. Li, J., Liu, Y., Wu, H., Chu, B.: Passivity-based robust control of permanent magnet synchronous motors. J. Comput. Inf. Syst. 12(9), 4965–4972 (2013)

    Google Scholar 

  43. Tang, Y., Yu, H., Zou, Z.: Hamiltonian modeling and energy-shaping control of three-phase AC/DC voltage-source converters. In: IEEE International Conference on Automation and Logistics, Qingdao, China, pp. 591–595 (2008)

    Google Scholar 

  44. De Battista, H., Mantz, R., Christiansen, C.: Energy-based approach to the output feedback control of wind energy systems. Int. J. Control 76(3), 299–308 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  45. Wang, C., Zhou, J.: Hamiltonian control stabilization for grid-side converters in doubly-fed wind turbines. In: Chinese Automation Congress, Wuhan, China, pp. 1252–1257 (2015)

    Google Scholar 

  46. Pahlevani, M., Pan, S., Mash, J., Jain, P.: Port-Controlled Hamiltonian (PCH)-based control approach for wind energy conversion systems. In: IEEE 5th International Symposium on Power Electronics for Distributed Generation Systems, Wuhan, Galway, pp. 1–5 (2014)

    Google Scholar 

  47. Bose, B., Eisenhut, C., Krug, F.: Modern Power Electronics and AC Drives. Prentice-Hall, Upper Saddle River (2002)

    Google Scholar 

  48. Eisenhut, C., Krug, F.: Wind-turbine model for system simulations near cut-in wind speed. IEEE Trans. Energy Convers. 22(2), 414–420 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihor Shchur .

Editor information

Editors and Affiliations

Appendix

Appendix

  1. (a)

    Parameters of the VAWT

WECS

VAWT

P WECS.n (kW)

P WT.n (kW)

A (m2)

r (m)

ωn (rad/s)

TWT.n (N m)

J Σ (kg m2)

1.0

1.214

5.29

1.4

26.8

45.3

19.0

  1. (b)

    Parameters of the PMSG

PMSG

p

Φ, Wb

R, Ω

Ld = Lq,H

20

0.13

0.75

0.004

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Shchur, I., Lozinskyi, A., Kopchak, B., Biletskyi, Y., Shchur, V. (2018). Passive Stall Control Systems of Power Limitation Modes for Vertical Axis Wind Turbines (VAWT). In: Mazur, D., Gołębiowski, M., Korkosz, M. (eds) Analysis and Simulation of Electrical and Computer Systems. Lecture Notes in Electrical Engineering, vol 452. Springer, Cham. https://doi.org/10.1007/978-3-319-63949-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63949-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63948-2

  • Online ISBN: 978-3-319-63949-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics