Skip to main content

Extracting of High-Level Structural Representation from VLSI Circuit Description Using Tangled Logic Structures

  • Conference paper
  • First Online:
Biologically Inspired Cognitive Architectures (BICA) for Young Scientists (BICA 2017)

Abstract

This paper proposes a method of automatic VLSI circuit analysis. We propose pattern-free, technology independent method for extracting of functional blocks with irregular structure. On the first step, transistors are grouped by their structure. Groups with irregular structure are highly interconnected to each other. Detecting Tangled Logic Structures (TLS) with a GTL-depended linear ordering and genetic algorithm divides the circuit due to its functional structure and forms the gate-level VLSI circuit. High-level functional blocks in circuit description consist of gate-level cells groups, which are also highly interconnected. After TLS-blocks extracting, it is possible to describe their function. TLS-blocks are smaller, represent a cell of high-level circuit, and are thus more suitable for further functional circuit analysis than a gate-level VLSI circuit.

The experimental data obtained as a result of the principle electrical circuits of different degree of connectivity analysis confirmed the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Lester, A., Bazargan-Sabet, P.: YAGLE, a second generation functional abstractor for CMOS VLSI circuits. In: Proceedings of the Tenth International Conference on Microelectronics, pp. 265–268 (1998)

    Google Scholar 

  • Pelz, G., Roettcher, U.: Pattern matching and refinement hybrid approach to circuit comparison. IEEE Trans. Comput.-Aided Des. 13, 264–275 (1994)

    Google Scholar 

  • Graeb, H., Zizala, S.: The sizing rules method for analog integrated circuit design. In: Proceedings of the 2001 IEEE/ACM International Conference on Computer-Aided Design, pp. 343–349 (2001)

    Google Scholar 

  • Huang, K.-T., Overhauser, D.: A novel graph algorithm for circuit recognition. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1695–1698 (1995)

    Google Scholar 

  • Zhang, K., Du, H.: Maximizing influence in a social network: improved results using a genetic algorithm. Phys. A Stat. Mech. Appl. 478, 20–30 (2017)

    Article  Google Scholar 

  • Kundu, S.: GateMaker: a transistor to gate level model extractor for simulation, automatic test pattern generation and verification. In: Proceedings of the International Test Conference, pp. 372–381 (1998)

    Google Scholar 

  • Yang, L., Richard Shi, C.-J.: FROSTY: a program for fast extraction of high-level structural representation from circuit description for industrial CMOS circuits. Integr. VLSI J. 39, 311–339 (2006)

    Article  Google Scholar 

  • Ohlrich, M., Ebeling, C.: SubGemini: identifying subcircuits using a fast subgraph isomorphism algorithm. In: Proceedings of the IEEE/ACM Design Automation Conference, pp. 31–37 (1993)

    Google Scholar 

  • Abadir, M.S., Ferguson, J.: An improved layout verification algorithm (LAVA). In: Proceedings of the European Design Automation Conference, pp. 391–395 (1990)

    Google Scholar 

  • Moharam, R., Morsy, E.: Genetic algorithms to balanced tree structures in graphs. Swarm Evol. Comput. 32, 132–139 (2017)

    Article  Google Scholar 

  • Jolly, S., Parashkevov, A.: Automated equivalence checking of switch level circuits. In: Proceedings of the IEEE/ACM Design Automation Conference, pp. 299–30 (2002)

    Google Scholar 

  • Jindal, T., et al.: Detecting tangled logic structures in VLSI netlists. In: Design Automation Conference (DAC), pp. 603–608 (2010)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the MEPhI Academic Excellence Project (agreement with the Ministry of Education and Science of the Russian Federation of August 27, 2013, project no. 02.a03.21.0005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrey Trukhachev or Natalia Ivanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Trukhachev, A., Ivanova, N. (2018). Extracting of High-Level Structural Representation from VLSI Circuit Description Using Tangled Logic Structures. In: Samsonovich, A., Klimov, V. (eds) Biologically Inspired Cognitive Architectures (BICA) for Young Scientists. BICA 2017. Advances in Intelligent Systems and Computing, vol 636. Springer, Cham. https://doi.org/10.1007/978-3-319-63940-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63940-6_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63939-0

  • Online ISBN: 978-3-319-63940-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics